R&D Report
Research - Methods - Development 1998:2

On Inclusion Probabilities
for Order Sampling

Bengt Rosén



INLEDNING
TILL

R & D report : research, methods, development / Statistics Sweden. — Stockholm :
Statistiska centralbyran, 1988-2004. — Nr. 1988:1-2004:2.

Hari ingar Abstracts : sammanfattningar av metodrapporter fran SCB med egen
numrering.

Foregangare:

Metodinformation : preliminar rapport fran Statistiska centralbyran. — Stockholm :
Statistiska centralbyran. — 1984-1986. — Nr 1984:1-1986:8.

U/ADB / Statistics Sweden. — Stockholm : Statistiska centralbyran, 1986-1987. — Nr E24-
E26

R & D report : research, methods, development, U/STM / Statistics Sweden. — Stockholm :
Statistiska centralbyran, 1987. — Nr 29-41.

Efterfoljare:

Research and development : methodology reports from Statistics Sweden. — Stockholm :
Statistiska centralbyran. — 2006-. — Nr 2006:1-.

R & D Report 1998:2. On inclusion probabilities for order sampling / Bengt Rosén.
Digitaliserad av Statistiska centralbyrédn (SCB) 2016.

urn:nbn:se:scb-1998-X1010P9802



R&D Report
Research - Methods - Development 1998:2

On Inclusion Probabilities
for Order Sampling

Bengt Rosén



R&D Report

Research - Methods - Development 1998:2

On Inclusion Probabilities for Order Sampling (Bengt Rosén)

Statistics Sweden
1998

Fran trycket
Ansvarig utgivare
Producent

Forfragningar

Mars 1998
Lars Lyberg
Statistiska centralbyran, utvecklingsavdelningen

Bengt Rosén, Statistiska centralbyran

ES/LEDN-S, Box 24300, S-104 51 STOCKHOLM
telefon 08-783 44 90

telefax 08-667 77 88

e-post bengt.rosen@scb.se

© 1998, Statistiska centralbyran

ISSN 0283-8680
Printed in Sweden
SCB-Tryck, Orebro, 1998


mailto:bengt.rosen@scb.se

February 1998

On Inclusion Probabilities
for Order Sampling

Bengt Rosén

Abstract.

Ay, Ay, ..., Ay denote target inclusions probabilities for a, possibly approximate, tps sampling
scheme with (fixed) sample size n from a size N population, and mt,(n), T,(n), ... , Ty(n) the fac-
tual inclusion probabilities. Using results for order sampling (Rosén 1997a) the author exhib-
ited (in Rosén 1997b)a class of approximate mps schemes, order ntps (OSmps) schemes, and
advised allied estimation procedures. These procedures were derived from limit results for lin-
ear statistics, and no per se study of the mi(n) was needed. The (asymptotic) 7tps property of the
OSmps schemes was proved on a "macro” level, to the effect that the quasi Horvitz - Thompson
estimator with A; instead of w; yields consistent estimation.

The chief result in the present paper is that the asymptotic mps property holds also on "micro"
level, i.e. that the individual m; lies close to the target A;, i.a. we show that (1) below holds
under general conditions. Special attention is paid to certain particular OSrtps schemes : uni-
form, exponential and Pareto OSmps.

m(n)/A; — 1, as sample size n (and population size N) tend to infinity, i=1,2,..,N. (1)

As main technical tools we derive error bounds for a generalized version of the approximation
m(n)=A,;, valid for general order sampling. The error bounds are used to prove the convergence
in (1), and also to provide information on convergence rates.

We also consider exact formulas for m;, 2 main aim being to show how unmanageable such
formulas become when n and N are not very small. In spite of this, manageable formulas are
derived for a specific, non - trivial OSmps situation. They are used in a numerical study of the
goodness of the approximation 7; = A;. The findings indicate that Pareto mps yields best
approximation, and suggest the following rule of thumb : For Pareto OSnps, mi(n) differs only
negligibly from A; if min (n,N-n) =5.
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On Inclusion Probabilities for Order Sampling

1 Basic notions and outline of the paper

A means for utilizing auxiliary information in sample surveys is nps sampling, i.e. sampling
(without replacement) with inclusion probabilities proportional to given size measures. Rosén
(1997b) introduced a novel class of mps schemes, called order mps schemes, and advised
procedures for point and variance estimation for such schemes. These procedures are based on
results for a more general notion called "order sampling" introduced in Rosén (1997a). We
start by reviewing the definitions of the sampling schemes.

1.1 Definition of order sampling, notably order tps sampling
The following definition is structured by successive specialization : Order sampling - order
sampling with fixed distribution shape - order nps sampling.
DEFINITION 1.1 : To each unit £ in a population U=(1,2,...,N) is associated a probability
distribution Fi(t) with density fi(t), 0 <t < co. A sample size n, n< N, is prescribed.
a. Order sampling with sample size n and order distributions F = (F,,F,, ...,Fy) is
carried out as follows. Independent ranking variables Q,, Q,, ..., Qy with distri-
butions F,, F,, ..., Fy are realized. The units with the n smallest Q - values consti-
tute the sample. The scheme is referred to by OS(n; F).
b. H(t) is a probability distribution with density h(t), 0 <t <, and 8=(0,,90,, ...,06y)
are given positive real numbers. Order sampling with fixed shape distribution H,
intensities 6 and sample size n is OS(n;F) with the following order distributions;
Fi(t) = H(t-0y), with density fi(t) =0x-h(t-6y), 0<t<e, k=1,2,....N. (1.1)
The general scheme is referred to by OSFS(n; H; 0). Particular schemes are named

by their shape distributions.
€. A=(A,..,Ay) are given real numbers which satisfy;
N
O<ir<l, k=1,2,....,N, XA, =n. (1.2)
k=1

Order nps sampling with sample size n, shape distribution H and target inclusion
probabilities ). is OSFS(n; H;0) with intensities;
0, =H'(\), k=1,2,...,N, (H" denotes inverse function). (1.3)

The general order nps scheme is referred to by OSmps(n; H; A). Particular OSnps
schemes are named by their shape distributions.

We will pay special attention to schemes with the following shape distributions.

Uniform OSFS: H(t)=t, h(t)=1, 0<t<1, H(t)=1, h(t)=0, 1<t<oo. 1.4)
The corresponding OSnps scheme, uniform OSnps, has intensities;
O =H'0wW =A, k=1,2,...,N. (1.5)
Exponential OSFS: H(t)=1~e™", h(t)=e™, 0<t<oo. (1.6)
The corresponding OS7nps scheme, exponential OS7ps, has intensities;
O = H'W)=-log (1- A, k=1,2,...,N. 1.7
Pareto OSFS: H(t)=t/(1+t), h(t)=1/(1+t)*, 0<t<o. (1.8)
The corresponding OSmps scheme, Pareto OS7ps, has intensities;
B = H'w)=2A/(1-A), k=1,2,...,N. 1.9)

1



1.2 Outline and main results
In the sequel &; has its usual sampling theory meaning;
Ti(n) = inclusion probability for unit i in a sample of sizen, i=1,2,...,N. (1.10)

The point and variance estimation procedures in Rosén (1997 a & b) are derived in a somewhat
non - standard way. Instead of "usual" estimators (of Horvitz - Thompson and Sen - Yates -
Grundy type) based on known inclusion probabilities, the estimators are deduced from limit
results for linear statistics. This approach circumvents the obstacle that numerically manage-
able formulas for inclusion probabilities are unfeasible for order sampling. In the limit
approach no per se study of inclusion probabilities is needed. Matters work the other way
round, the estimators yield conjectures about approximate m; - values, as stated below.

APPROXIMATE INCLUSION PROBABILITIES : Consider general order sampling
OS(n; F), and let € be determined by the relation;

N
Y F.(®=n. (1.11)
k=1
Then the following approximation works well under general conditions;
() =F®), i=1,2,..,N. (1.12)
For OSnps(n; H; 1), (1.12) specializes, for any shape distribution H, to;
mm) =4, i=1,2,...,N. (1.13)

Remark 1.1: Details on the specialization of (1.12) to (1.13) for OSnps are given in Section 3
Rosén (1997b), in particular the following technical result, which will be useful later on.

For an OSmps scheme, the solution to equation (1.11) is &= 1. -] (1.19

In Rosén (1997a & b) is shown that asymptotic correctness of (1.12) and (1.13) holds on
"macro" level, in the sense that the ""quasi" Horvitz - Thompson estimator with A; instead of m;
yields consistent estimation. A chief aim in the present paper is to provide justification also on
"micro" level, i.e. that individual m; lie close to the corresponding target value A;. In other
words, we justify that OSzps schemes asymptotically live up to their 7ips name. In Section 4 is
proved that, under general conditions, (1.13) holds for the OSmps schemes of particular inter-
est, uniform, exponential and Pareto OS7ps, to the following effect.

mi(n)/Ai — 1, as the sample size n tends to infinity, i=1,2,...,N, (1.15)

where the limit frame - work is the customary one in finite population sampling contexts, a
sequence of populations whose sizes of tend to infinity is considered.

The main technical tools in the proofs are theoretical error bounds for the approximations
(1.12) and (1.13). Even if OSmps lies in our focus of interest, the derivation of error bounds is
most comprehensible when made for general order sampling, which is the task in Section 2. In
Section 3 the bounds are specialized to the OSTps schemes of particular interest.

The error bounds also yield results about the rate of convergence in (1.15). These results fur-
nish more direct proofs of the fact shown in Rosén (1997 a&b) that the point estimator yields
consistent estimation, i.e. that relative estimation errors are asymptotically negligible. They
also provide information on the rate of convergence to 0 for estimator biases. In Section 4 we
also discuss the following matter. The approach in this paper does presumably not lead to best
possible orders of magnitude for the error bounds. However, derivation of sharper bounds
would increases the complexity of the problem dramatically.



Even if limit results of type (1.15) have theoretical interest, they are less interesting from a
practical point of view. Then one wants to know if the approximation (1.13) works sufficiently
well in a specific finite situations. The theoretical error bounds are, as usual, not sharp enough
to yield practically interesting information. In Section 5 we consider exact formulas for 7; . The
chief aim is, however, not to exhibit formulas for practical use, rather to show how
unmanageable such formulas become when n and N are not very small. In spite of this, rea-
sonably manageable formulas are derived for a specific, but non - trivial and fairly general,
OSmps situation. These formulas are used in a numerical study of the goodness of the
approximation (1.13). Even if we cannot draw comprehensive conclusions from the numerical
findings, we mean that they quite strongly indicate the following result.

For Pareto OSnps, ; differs only negligibly from A; if min (n,N-n) = 5. (1.16)

The findings also indicate that m; converges quite rapidly to A; for uniform and exponential
OSmps as well, but Pareto ntps is the scheme with best approximation.

Notation used throughout the paper: P, E, V and D= AV denote probability, expectation,
variance and standard deviation. 1(C) stands for the indicator of the set/event C, and # C for
the number of elements in it. The natural logarithm is denoted by log.

2 Error bounds for general order sampling

2.1 The basic estimate
We start with a notation.
DEFINITION 2.1: For a (fixed) population unit i, set;
G, ()= F (1), 0<t<e, i=1,2,...,N. 2.1)

k#i

Then, for 0 <y < N-1,
X: (y) is the solution to the equation (int): Gi(t)=y, i=1,2,...,,N, 2.2)
The following lemma will be basic in our study of the approximation error in (1.3).

LEMMA 2.1: Consider OS(n; F) from U. F;(E) and y;, i € U, are specified by (1.11) and
(2.2). Presume that the following conditions are met for some b = 1, some ¥ and some p; .

M <vi, x@-b)st<yi(n+b), (2.3)
YEM®2p;, x@-DSt<x @), 2.4)
YE®-1-E@®)21, x(@-b)<t<y@+b). 2.5)

k#i

Then the inequality below holds;
Ini- Fi®I< (b+1) --Z—i+2.1-e'b’m, i=1,2,...,N. (2.6)

1

Proof: We regard n and b > 1 as fixed, and introduce the following short notation;
0;=%i(n-b) and y;=%i(n+b). 2.7)

As in Definition 1.1, Q;, Q,,..., Qy denote the ranking variables. Introduce the variables A; and
B;, which count the number of Q:s with values less than @; and ; respectively;

Ailn;b) =#{k: k#i, Q=2 w;}, Bi(m;b)=#{k:k#i, Qusv;}. (2.8)

Since the sample consists of the units with the n smallest outcomes of Q;, Q,, ..., Qy;



1(unit i is included in the sample) > 1(A; <n)-1(Qi S wj), (2.9)
1(unit i is not included in the sample) = 1(B; 2n)-1(Q; > ). 2.10)

The independence of the Q:s yields that the events to the right in (2.9) are independent. The
same holds for (2.10). By using this and taking expectation we get;

7t;2 P(A;<n)-P(Q;< ;) = (1-P(A; 2n) -Fi(w;) 2 Fi(w;) - P(A;=n), (2.11)

1-m; 2P(Bi2 n)-P(Q;>Vi) = (1- P(Bi<n))-(1- Fi(yy)) 2 1-Fi(yy) - P(Bi<n). (2.12)
From (2.11) and (2.12) follows;

-[Fi®)-F(®)]-P(A;2n) < ;- K@ < F(y)-F(® +P(Bi<n). (2.13)

With t interpreted as "time", ¥i(y) is the time when Gi(t) crosses the level y. In the same vein, g
in (1.11) is the time when G;(t) crosses the level n-Fi(&). This together with the fact that G;(t)
is non-decreasing as t increases and 0 < F(§) < 1 yields;

Forb2>1: wiSES\m, i=1,2,...,N. (2.14)
Now (2.13) and (2.14) imply;
In;-F(®)| < max{F(® - F(w)), F(y)-F(®} + max{P(A; 2 ), P(B; < n) }. 2.15)

To pursue the estimate (2.15) we start by estimating max{ F,&) - Fi(w;) , Fiw) - Fi(®}. The
mean value theorem tells that Fi(t) - Fi(E) = (t-E) - f;(8) for a 8 between t and £. This together
with (2.3) yields;

FE)-F(0:) <(§- w;)-y; and F)-FE <Wi-&)-vi, i=1,2,...,N. (2.16)
We employ the following estimate in (2.16), with G; as in (2.1) and G' denoting derivative;
x-y<[G,(X) -G, (y)l/ inf G{(t), x<y. (2.17)
XSty

By (2.1) and (2.7), Gi(§) =n-Fi(§) and Gi(t))=n-b. Moreover, (2.4) states that G;'(t) is = p; on
the interval [0, V;]. Hence (2.17) yields;

E-0;<[n-F(@®-@-b)l/pisb/p;i. (2.18)
By analogous arguments follows;

Vi-E<[(m+b)-(n-F@)/pi <(b+1)/pi. (2.19)
The estimates (2.16), (2.18) and (2.19) yield;

max{ K& -Fi(wy), Fv)-FE}< (b+1)-7,/p,. (2.20)

Next we estimate the tail probabilities P(A; = n) and P(Bi < n). A; in (2.8) can be viewed as a
sum of independent Bernoulli variables Xy = 1(Qx < 0;), k#1i, with means E[X, ] = Fi(®));
A =YX, =X1Q,50,). (2.21)
k=i k=i
We use the "exponential bound" estimate in Lemma 2.2 below. First, by (2.21), standard for-
mulas for Bernoulli variables, (2.7), (2.1) and (2.2);
E(A,)=Y.F, (®,)=n-b, (2.22)

k=i
V(A)=D?(A,) = F.(®,)-(1-F,(0,)) < 3. F,(®,) =n-b<n. (2.23)
k=i k#i
Lemma 2.2 together with (2.21), (2.22) and (2.23) yield (2.24) below. Note that (2.5) and
(2.23) imply that 1 < D(A;) < Vn;

P(A; 2 n) = P(A; 2 E(A)) +b) = P(A; 2 E(A))+[b/D(A)]-D(A)) £2.1- 7 o (2.24)



Quite analogously, the relations

B, =2 1Q,2v)), (2:25)
E(B,) =Y R (y)=n+b, V(B)=Y F (¥))-(I-E(y,)< Y F(y,) <n+b, (226)

together with a straightforward modification of Lemma 2.2 yield (2.27) below. Note that (2.5)
and (2.26) imply that 1 < D(B;) <~/n+b.

P(B;<n) = P(B;< E(B))- b) = P(B; < E(B;)-[b/D(B)]-D(B))< 2.1- e V" | 2.27)
Now (2.24) and (2.27) imply;
max{P(A;>n), P(Bi<n)}<2.1. ™ (2.28)

Insertion of the estimates (2.20) and (2.28) into (2.15) yields (2.6). =

We conclude by deriving the exponential bound inequality that was used above. The result in
following lemma goes back on Kolmogorov. For completeness and for exhibition of explicit
constants we give a proof, though, which in essence is that of Proposition (i) in Section 18.1 in
Loéve (1955). Recall that D denotes standard deviation.

LEMMA 2.2: Let S = X;+X5+...+Xp, be a sum of independent Bernoulli variables.
Provided that D(S) > 1 we have;

P(S>E(S)+A-D@))< 21-e™, A2=0. (2.29)
Proof: By the relation 1(S = s) < exp{a.-(S-s)}, a =0, we have;
1(SZ E(S)+A-D(S)) <exp{a.-[S - (E(S)+A-D(S)]}. (2.30)
By taking expectation in (2.30) we get, with py = E(Xy);

P(S2E(S) +A-D(S)) Se™ * P®. Ele* ®E® =g > @ PO, HE[e“'(Xk“”‘)] . (2.31)

k=1

By expanding in power series and taking expectation we get;
2 3 4

a o a
E[Ca'(x"_pk)]=l+?'E(Xk _Pk)2 +?.E(Xk _Pk)3 +—Z|—.E(Xk _Pk)4 +....(2.32)

Since | X -px | £ 1 we have: IE(Xy - pr)" | S EIX - pil” S B(Xi - px )2 =V(Xy),u=2,3,4,.... By
using these estimates in (2.32) together with 1+x < e*, x 20, we get, provided that lot| < 1;

2 2
et w1 < 14 2 V& 1y “? + _3‘1‘.2+...] < 1+072-a% - V(X,)<
< exp{0.72-a* - V(X,)}. (2.33)
By employing (2.33) in (2.31) and noting that X, V(Xj) = D(S)? we get;
P(S=E(S) + A -D(S)) € exp{-A-a-D(S) +0.72-a* - D(S)*}. (2.34)
Now set a = 1/D(S) in (2.34) and note that D(S) > 1 implies 2 < 1;
P(S2E(S) + A -D(S)) <exp{-A+072} < 21.e”*. (2.35)

Thereby the lemma is proved. =

2.2 More explicit versions of the error bound

In Lemma 2.1, b is an optional parameter which remains to be chosen. The choice is a bit
involved, though, since b enters in the bound (2.6) as well as in conditions (2.3) - (2.5). To
untangle the situation we start with an auxiliary algebraic result.



LEMMA 2.3: Presume that p/y > e. Let b be the positive root to the equation;

x* =(n+x)-[log(p/v)]. (2.36)
Then;

() n<+n-log(p/y) <b <~/n -log(p/y) + [log(p/1)]?, (2.37)

() (b+1)- % +2.1.e7 < g— - (/1 -log(p/v) +[log(p/¥)1* +3.1). (2.38)

Proof : Set g(x) = x*- x - [log(p/)]*-n- [log(p/Y)]*. Check that g(Vn-log(p/y)+ [log(p/1)]?) > O
and g(\/n-log(p/y)) < 0. This yields (2.37). Since b satisfies (2.36) we have;

R N . v/p. (2.39)
Insertion of (2.39) and the right hand side estimate in (2.37) into the left hand side of (2.38)
yields the right hand side of (2.38). =

THEOREM 2.1: Consider OS(n; F) from a population in which i is a specific unit. Let
Fi(€) and y; be according to (1.11) and (2.2). Moreover, let y;, pi, ®; and y; be quantities
such that p;/v; > e, and such that the following conditions are met;

fi() <vy;, for 0<t< oo, (2.40)

() 2pi>0, 0<t<y, (2.41)

v, 2y, (n++n-log(p,/v,) +[log(p,/v,)I), (2.42)

®, <x;(n—(Vn-log(p,/v,) +og(p; /v )T)), (2.43)

2EW®-0-FE®21, o<ty (2.44)
Then;

i -F®! s%-(& 10g(p,/7,) + log(p, /YT +3.1). (2.45)

Proof: The claim (2.45) is obtained by applying Lemma 2.1 with b as stated in Lemma 2.3 and
by using the estimate (2.38). Note that the left inequality in (2.37) tells thatb>1. =

Next we formulate a version of Theorem 2.1 with more easily checked conditions. However, it
requires additional assumptions, notably that the order distribution densities are decreasing.

THEOREM 2.2: Consider OS(n; F) from a population in which i is a specific unit.
Let € and Fi(§) be according to (1.11). Presume that;

(1) fi(t), 0<t< =, is non-increasing, k=1,2,...,N, (2.46)
£(0) < 7i. (2.47)
Set;
N
k=3.f,(0). (2.48)
k=1
Lety; and w; be quantities such that the following conditions are met;
N
() Y.E v, 2n+n-logk/y,) +[log(k/y,)) +1. (2.49)
k=1
N
(i) o, <E—(Vn logk/y,)+[logk/v,)1*)/ L£,(®). (2.50)
k=1



(v) D E (1) -(1-F()2125, o;<t<wy,. (2.51)
k=1
Let p; satisfy;
N
P < 2 £, (y;)- max{fi(0), £:(0), .., fx(0)}- (2.52)

Then, provided that k/7y; > € we have;

I -Fi(®)! s%-(«/ﬁ -log(k/7,) +[log(k/y,)]* +3.1). (2.53)

1

Proof : In the first round we disregard (2.48), and interpret K in (2.49), (2.50) and (2.53) as a
synonym to p; in (2.52). Under this premise we show that (i) - (iv) imply (2.40) - (2.44). Then
(2.53) follows from (2.45).
It is readily seen that (2.46) and (2.47) imply (2.40), and (2.46) and (2.52) imply (2.41). Set;

N

G(t)= D F (1), 0<t<co. (2.54)
k=1

For Gi(t) in (2.1) we have Gi(t) = G(t) - 1, Thus (2.47) (with k=p;) implies (2.42). To show that
(2.50) (with k= p;) implies (2.43) note that, by (2.46), the derivative G(t) is non - increasing.
Hence G(t) is convex (upwards). Thus the curve y = G(t) lies under any of its tangents. By
drawing the tangent in t = £ and paying regard to (1.11), which says that G(§) = n, we get;

N

G()<n+(t—-E)-G'E) =n+(t-8) - (&), 0<t<eo. (2.55)
(2.55) in combination with G(t) = G;(t) yielkc;;;
x:(m— (Vo -log(p,/7;) + [log(p, /¥,)I)) 2
> & - (Vn-log(p, /v,) +[log(p,/¥,)1*) gfk ®. (2.56)
Now (2.56) implies that (2.43) is satisfied. Finally, (2.44) follows from (2.51) together with
the observation that Fi(t)- (1-Fi(t)) < 0.25, k=1,2,...,N. Hence the result is proved for k= p;.

Next we take the actual k into account, and we start with the following observation. If the
theorem with (2.48) omitted holds for Kk = Ky, it holds for any K > K, , since (2.49) - (2.51)
become more restrictive and the bound (2.52) more generous if K is increased. So far the theo-
rem has been proved for k = pi. Under (2.46) holds, as is readily checked, that K in (2.48) is
greater than p; in (2.52). Hence, the theorem is true in the given formulation. =

3 Error bounds for OSnps inclusion probabilities

3.1 Error bounds for OSnps schemes with decreasing shape density

Here we specialize Theorem 2.2 to OSmps schemes. To make the result easy to apply in par-
ticular situations we give it an algorithmic structure.

THEOREM 3.1: Consider OStps(n; H;2) from a population, in which i is a specific
unit. Presume that, where h as usual denotes the density of H;

h(t), 0 <t <, is non-increasing. 3.1
Step 1: With intensities according to (1.3), i.e.
O=H'y, £k=1,2,...,N; (3.2)

set;



N
B, =log(D.6,/8,),
k=1

and determine an o ; such that;
aj 2 Bia

Step 2: Determine a ; so that the following inequality is satisfied;
EN:H(ek-wi) >n+vn-q, +a? +1.
k=1

Step 3: With
8 =§;9k-h(9k),

determine an ®; so that the following inequality is satisfied;
o, <1-Wn-a, +a?)/s.

Then,
Step 4: provided that the following condition is met;

EN:H(O,(- t) -[1-H@©,-t)]2125 , o;ist<wy,,
k=1
Step 5: and p; satisfies;
p; < EN:Gk-h(ek-\vi) —h(0) -max{0,: k=1,2,...,N},
k=1
Step 6: the following error bound holds;;

;- h(O) oo, +a’+3.0).

Ini'}\'il <

1

3.2 Error bound for uniform OSnps

(3.3)

3.4

3.5)

(3.6)

3.7

(3.8)

3.9

(3.10)

Proof: The result will be derived from Th. 2.2. The relation fi(t) = 6;-h(t-6;) in (1.1) together
with (3.1) implies (2.46) and (2.47) with y; = 8;-h(0). B; in (3.3) takes the value B; = log(k/7y;)-
The relation Fi(t) = H(t-6;) in (1.1) yields that (3.5) is a version of (2.49), and that (2.51) spe-
cializes to (3.8). By (1.14), which states that £= 1, and fi(t) = 6;-h(t- 6;) is seen that (3.7)
implies (2.50). Likewise, (3.9) implies (2.52). Finally, (3.10) is the present version of (2.53). ®

In the following we apply Theorem 3.1 to the OSnps schemes that are specified by (1.4)-(1.9).
Our main aim is to exhibit background results for the limit considerations in Section 4. There-

fore we do bother about achieving ”good constants”.

THEOREM 3.2 : Consider uniform OSzps(n ; A) from a population in which i is a

specific unit. Then;
Imi- 2l <A, (9, +3.Un)-(1-A/n) ", with
}\.=maX{}\.1,)\,2,...,)\.N},
logn log(1/A,) (log(l/k.))z
9, =3 + =42 =",
‘7 o /n Jn
provided that the following conditions are met;
n-1+9,+V¥n)-(1-1-(1+9, +1/n)) 21.25,
n-1-9,)-(1-1-(1-9,)) 21.25,
1+9, +1/n<VA.

(3.11)
(3.12)

(3.13)

(3.19
(3.15)
(3.16)



Proof : We follow the algorithm in Theorem 3.1. H and h are stated in (1.4), from where it is
seen that (3.1) is satisfied. As stated in (1.5), 6k = Ax, k=1, 2, ..., N, which together with
(1.2) yields Bi in Step 1, B; = logn + log (1/A;). We chose q; likewise;;

o; = logn + log (1/4;). 3.17)
By (a+b)* < 2-(a’ + b%, logn/vn <1 and (3.12) we get ;
Jn-o, +a2<n-9,. (3.18)
In Step 2 we first note that (1.4) and (1.5) yield;
N N
Y H(@®,-t) =t-3 A, =n-t, 0St<1/A. (3.19)
k=1 k=1
By this and (3.18), (3.5) becomes y;- n=n+n-¥, +1, which implies that (3.5) holds for;
v, =1+79, +1/n. (3.20)
In Step 3 is readily seen that § in (3.6) equals n. Hence, an admissible ®; is;
0, =1-9,. (3.21)
In Step 4 we use the estimate ;
N N
Y H®,-t)-(1-H®, 1))=Y At-(A=A )2n-t-(I-A-t), 0St< /A, (3.22)
k=1 k=1

The function to the right in (3.22), B(t) =n-t-(1-A-t), is convex (upwards). Thus its minimum
over [w;,V; ] is attained in either of the end points. Hence, (3.8) is satisfied if B(w;) and B(ys;)
both exceed 1.25 which, by (3.20) and (3.21), leads to (3.14) and (3.15). We also used that
V; < 1/A, which is taken care of by (3.16).

In Step 5, when ;< 1/A the value of the sum in (3.9) can be calculated, which we chose as p;;
N
p, =D A 1—{max{A,,A,,..., Ay} =0-A. (3.23)
k=1
Finally, insertion into (3.10) yields (3.11). =

3.3 Error bound for exponential OSnps

THEOREM 3.3: Consider exponential OS7mps(n;A) from a population in which i is a
specific unit, and let A be according to (3.12). Then;

. va-a»Y'

R ( St sy )) . with (324)
2

9, =3 1°g(“j/(% M log%}“) + 2.[1°g%7‘i)J , (3.25)

provided that the following conditions are met;
n-(1-A+9,+1/n)-(1-1) 22.5. (3.26)
n-(1-A-9,)-(1-1)=22.5. (3.27)
1-A=29, +Un. (3.28)

Proof: Again we follow the algorithm in Theorem 3.1. H and h are stated in (1.6), from where
it is seen that (3.1) is satisfied. By (1.7) we have;

Ox=-log(1-Ak), k=1,2,...,N. (3.29)
The elementary inequalities below will be useful;
A, <-log(1-A )SA /(1-A)<A/(1-RA,). (3.30)



In Step 1 we start with the following estimate, where (3.30) is employed;

N N N, 0
;6k=§—log(l—kk)S ;1-x=1—x' (3.31)
From (3.3), (3.31) and (3.29) + (3.30) follows that an admissible ¢ is;
o, =log(n/[(1-4)-A,1=log(n/(1- 1)) +1log (VA,). (3.32)
By using (a+b)? < 2-(a” + b%) in (3.32), and log [n/(1-A)]<Vn we get with 9, as in (3.25);
vo-o,+a’<n-9,. (3.33)

Next we prepare for Step 2. Since H(t)=1- exp(- t) is convex (upwards), so is
N
G(t)= D H(0,-1) , 0<t< . (3.34)
k=1

Hence G(t) lies above its chords, which for the chord from t =1 to t = 2 implies: G(t) > G(1) +
(t-1)-[G(2)-G(1)], 1 £t< 2. In combination with G(1)=n and

N N
G(2) = [1-(1-1,)* 1= (22, ~A%)2n-(2- 1), (3.35)
k=1 k=1

we get G()=n-[1+(1-A)-(t-1)], 1 £t <2, which by (3.33) yields that (3.5) is satisfied for;
9, +V/n__ n.a+ai+l

| = >1 3.36
Vit o A (3:36)
We prepare Step 3 by the following inequality, where (3.30) is used;
N N N
§=0,-h(6,) = —log(1-A,) -e“'* 2(1-2)- YA, =(1—1)-n. (3.37)
k=1 k=1 k=1
From (3.37) and (3.33) is seen that an admissible w; is;
©,=1-9,/(1-2). (3.38)

We now turn to Step 4. By (1.6) and (1.7) we have;
N N N
ZH(Bk-t)-(l-—H(Bk-t)) =Z(l—(l—lk)t)-(1—-7\,k)t 2(1-A)' -Z(l—(l—lk)‘) >
k=1 k=1 k=1

The last sum is a convex (upwards) function of t and, hence, it lies above its chords. By using
this for the chord from t=0 to t=2 we can continue the inequality as follows;

N N
2(1—7&)2-%-Z(l—(l—xk)2)=(l—1)2-%-Zkk-(Z—lk)Z%-n-(l—X)z- (3.39)
k=1 k=1

The final function (of t) in (3.39), B(t)= 0.5-t-n-(1 - 1) is linear. Thus its minimum over the
interval [w;, ;] is attained in either end point. Hence, (3.8) is satisfied if B(;) and B(y;) both
exceed 1.25, which leads to (3.26) and (3.27).

We turn to step 5 and exhibit a p; which satisfies (3.9). Here we impose the condition v; < 2,
which is taken care of by (3.28). Then we have by the estimates in (3.30);

N

Right hand side in (3.9) = »_—log(1—-1,)-(1-4,)" + log(1-2) 2
k=1

2(1-1)° -ZXk —~loglV(1-A)]=(1-A)*- n—logfl/(1-M)]. (3.40)
k=1

Hence, the right hand expression in (3.40) is an admissible p; . Insertion of this p; into (3.10)
together with (3.29)+(3.30) and (3.33) yields the bound in (3.24). &=
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3.4 Error bound for Pareto OSnps

THEOREM 3.4: Consider Pareto OSmps(n;A) from a population in which i is a specific
unit. Let A and 9, be according to (3.12) and (3.25). Then;

15 04 Y
Im-Ail <A, -(8, +3.1/n)- a-3)° -(l—m) , (3.41)
provided that the following conditions are met;
n-(1-A-9,)=1.8. (3.42)
Y, +1/n<0.17. (3.43)

Proof: Again we follow the algorithm in Theorem 3.1. H and h are stated in (1.8), from where
it is seen that (3.1) is satisfied. By (1.9);

O =Ax/(1-Ag), k=1,2,...,N. (3.44)
In Step 1 we start with the estimate;
N
; 2o x Zk (3.45)
From (3.45) and (3.3) is seen that;
B. <log [MJ log(n/(1-A))+1log(1/A,) . (3.46)
' (1-2)-A '

Hence, (3.32) yields an admissible ; also here, and (3.33) applies. We turn to Step 2 and start
with the estimate;;

N N t-n
;H(e“'t) =t 21+x =D C1+h-(t=D)

k=1

=n-(1+(—1l2‘-)—'@) zn-(1+9—i)t—'(i'—l)), t>1. (347

1+A-(t-1
From (3.47) and (3.33) is seen that (3.5) is satisfied if;
A-0)-(y, -D/y, 29, +1/n > (Wn-a,+a’+1)/n. (3.48)
Under the additional assumption 1 <y; < 1.2, (3.48) implies that (3.5) is satisfied for;
Y, =1+12-(9, +Vn)/(1-A) . (3.49)
In Step 3 we use the estimate;
N N N
5=3.0,-h(6,) =Y. A, (1-A,) 2 (1-4)- XA, =(1-1)-n. (3.50)
k=1 k=1 k=1
From (3.50) is seen that the following w; makes (3.7) satisfied;
0, =1-9,/0-2). (3.51)
Next we prepare Step 4. For 1 <y; < 1.2, we have;
EN:H(e t)-(1-H(®,- 1) =t i (oh)
k=1 * “ - k=1 (1+}\' '(t"l))z
t-(1- t t-n-(I1-2)
A, 207-t-n-(1-1), 0<t<12. (352
S AA-(t- 1)) Z 122 n-(1-4) (3:52)

11



The last function in (3.52), B(t)= 0.7-t-n- (1 -1), is linear. Thus its minimum over [, V;] is
attained in either end point. Hence, (3.8) is satisfied if B(w;) and B(y;) both exceed 1.25,
which is implied by (3.42). The assumption 1 <; < 1.2 is taken care of by (3.43).

We turn to Step 5 and exhibit a p; which makes (3.9) satisfied. Under 1 <y; < 1.2 we have;
Right hand side in (3.9) =
YA (1-1)) { Ao (1-2,)
k

=§(1+M'(‘Ifi—l))2 - A+A,-(y, —1)>

The last expression in (3.53) is an admissible p; . Insertion into (3.10) of this p; together with
(3.44) and (3.33) yields the bound in (3.41). x

}z 0.7-(1-A)-n — 0.25. (3.53)

4 Asymptotic results

4.1 Generalities

The error bounds in Sections 2 and 3 yield information about the asymptotic behavior of OS T
(n): s. The frame - work for limit consideration is as follows. A sequence, indexed by g=1,2,3,
.., of OS(nq : F9) from a population of size N, is considered. A sub - or superscript g signifies
that a quantity relates to the g:th situation. We aim at results of the following type.

0 (m,) FYEY)
FEOE®) n® (n,)
Results of type (4.1) for general OS may be derived along the following lines. Start from either
of Theorems 2.1 and 2.2, and formulate conditions on Ny, FY and n, which imply that the

theorem holds with vanishing approximation error as q— «. However, the required conditions
become quite involved when formulated for general OS situations. We therefore confine to the

OSmps schemes of special interest.

— 1, orequivalently 1, asny — oo. 4.1)

4.2 Limit results for OSnps schemes

We consider OSmtps with sample size nq from a population of size Ny, in which i is a specific
unit, g=1,2,3,... . The target inclusion probabilities and their maximal values are denoted;

A =P AP, ,AT)  and AP =max{A7, AP, . AL 3, g=1,2,3,.... (4.2)

THEOREM 4.1: For uniform, exponential and Pareto OSps holds;

1@m,) | (logn, +log/A®)Y"
limsup o - I g0, 7 08 <o, (4.3)
o A \n
q—> i q
provided that the following conditions are met;
() ng— o, andhence N;— o, asq— oo, 4.9
(ii) limsup A9 <1, 4.5)
q—
(iii) &1_1)2 log(l/)t(i‘”)/,/nq =0. (4.6)

Proof: The claims in the theorem follow readily from Theorems 3.2, 3.3 and 3.4. The details
are left to the reader. =

Remark 4.1: Condition (4.5) implies that sampling fractions stay away from 1 uniformly in g;
limsupe-- n /N, <1. 4.7
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This is realized from the inequality AQ> ng/Ny, which follows from (1.2). =

Remark 4.2: If target inclusion probabilities are of the same order for all population units
(uniformly in g), i.e. if the following condition is met;

A< c-rnin{k(]“),k‘z‘“,...,k(gi}, for somec <, g=1,2,3,..., (4.8)

we have for any i;

' 9(n,) l logN B
limsup | ———— —1|- L] <o, i=1,2,...,Ng, 4.9)
qren }\'(iQ) | /nq q (

provided that (4.4), (4.5) and limsup -~ (logN_)/n, =0 hold. If also sampling rates stay
away from O uniformly in g, i.e. ng/Ng2d >0, ¢=1,2,3,... , we have for any i;

', ) logn B
hmsup ;\'(q)q -1 \/n_q <oo, |[= 1’2’._.,Nq. (4-10)
= | i q

The result (4.9) is realized as follows. By (4.8), A; = A¥/c. Combined with A‘Y > n,/ N, this
yields A; 2 ng/ (c-Ng), which in turn yields log(1/A;) < log Ny + logc, which implies (4.9). =

4.3 On estimator bias under OSnps sampling

We consider estimation of the population total ©(y)=y; +y>+...+yn from y - observations of
the units in an OSTps sample with target inclusion probabilities A = (A, A,, ..., Ay). LetI;, I, ..,
Ix denote the sample inclusion indicators, i.e. Iy =1 if unit & is sampled, and O otherwise. The
natural estimator of 1(y), and the one advised in Rosén (1977b), is;

N
= 3 =Yoo (4.11)

k € sample }"k k=1 }"k

By taking expectation in (4.11) we get;

R < Ty, < Ty

B[] =2y, ~ =0+ 2y, |7 -1]- (4.12)
k=1 k k=1 )\’k

Remark 4.2 tells that, under general conditions, (my/ Ax - 1) is of order at most O(logn/ \/H ).

This together with (4.12) yields that under general conditions we have;

E[#(y)] = 1(y) -[1+ O(logn//n)]. (4.13)
(4.13) shows that the estimator (4.11) is consistent under general conditions. It should be noted
that the error order estimate in (4.13) is conservative, i.a. to the effect that no regard is paid to
cancellation effects from alternating signs of (m/ Ak - 1). Moreover, as discussed in next sub -
section, the error order O(logn/ Jn ) for (mx/ Ak -1) is probably also conservative. In any case,
(4.13) shows that (4.11) yields consistent estimation under very general conditions.

4.4 Comments on the order of the approximation error

A natural question is if the error order O(logn/w/n) for (m/ A - 1) is the correct one. Our con-
jecture is, regrettably, that it is not. We believe, based on arguments provided by colleagues,
that the correct error order rather is O(1/n). However, as indicated below the approach in this
paper cannot yield better than O(logn/Vn).

The estimates in (2.11) and (2.12) disregard the event ©;<Q; < Y. As a consequence, the error
bound (2.6) is at least P(w;<Q;<;). For this term to be small, «} and v; shall lie close. This is
counterbalanced by the desire that P(Ai< n) and P(B; = n) in (2.11) and (2.12) should be close

13



to 1. We believe that the balancing is carried out fairly optimally when yielding order
O(logn/w/n). Hence, to obtain a sharper bound, one must be more deep- going in the analysis of
what happens near €. This, however, increases the problem difficulty dramatically.

Other indications that the correct error order is not reached are as follows. (i) Simulation find-
ings in Rosén (1997b) on estimator bias comply better with O(1/n). (ii) By a "direct" analysis,
Ohlsson (1990) shows that for uniform OS7ps, (4.13) holds with error order O( 1/Vn).

5 On exact formulas for OSFS inclusion probabilities
In this section we derive some exact formulas for OSFS inclusion probabilities. One aim 1is to
illustrate the following point.

Although OSFS is simple in definition and implementation, computation of inclusion
probabilities is exceedingly hard if the sample size is not very small. (5.1)

However, for a certain non - trivial situation, computationally manageable formulas can be

derived, and this is a second aim. The resulting formulas are then used in a numerical study of
the goodness of the approximation (1.13).

5.1 Inclusion probabilities for general OS schemes

A suggestive language for describing an OS(n ; F) sample is as follows. The population units
have independent random life lengths Q; with distributions F;, i=1,2,...,N. The sample con-
sists of the n units which die first. Set, where we presume that the arguments in 8 are different;

o(v;iy,lia,...,1v) = P(unit i; dies first, i, dies second, ...., iy is the v:th unit to die). (5.2)
We have;
@)=Y, X 8(Viiiyeniy i), i=1,2,...,N. (5.3)

V=1 ip,i5 seeely_g
An expression for the d:s is stated in (5.5) below, where we use the notation;

F(t)=1-F(t), 0<t<eo, (5.4
(5.5) is justified as follows. Death order iy, i, ..., iy occurs if, for t; < t; < ...< t, and infinitesi-
mal dt;,dt,, ..., dty, unit i; dies durmg the time interval [t;,t;+dt;), unit i, durmg [ta,tr+dty),...,
unit iy during [ty, ty+ dty), while the other units survive time t,+dt, . Since life lengths are
independent we get by summing (= integrating) over the possibilities for (t;,t,,...,ty);

8(V;inizeniv) = [£ (t)dt, [£, t)at, ... [£.t,) - TR, a, . (5.5)
0 5}

te, K] ig prdy

5.2 Inclusion probabilities for OSFS schemes
By (1.1), (5.5) takes the following form for OSFS(n;H;80);

8(V:i,iz,..,iv) = [0, h(8,-t,)dt, [0, (B, -1,) ... [0, h(B,-t,) - [[H®, t,)dt,. (5.6)
0 4y

to, Kip,ip iy

Formulas (5.3) + (5.5) provide one way to compute m;(n). An alternative is presented below.
Introduce the events, where i is a fixed unit and dt is infinitesimal ;

C(t;dt) = unit i dies during the time interval [t,t+dt), 0 <t < oo, 5.7
D(v;t) = v of units {1,2,...,N}\{i} die during [0,t), v=0,1,...,N-1, 0<t< oo, (5.8)
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The following holds: (i) D(v;t) and D(p;t) are disjoint for v# . (i) C(t; dt) and C(s; dt) are
disjoint for t#s. (iii) C(t;dt) and D(v;t) are independent. (iv) Unit i is sampled if C(t;dt) and
D(v;t) occur with v < n. Combination of (i)-(iv) yields;

n-1 =

()=, [P[D(V;0]-6,-h(8, t)dt . (5.9)

v=0 ¢
We pursue this approach in Section 5.2.3 under special assumptions on the intensities. First we
consider application of (5.3) to a case with general intensities.

5.2.1 Inclusion probabilities for exponential OSFS
As specified in (1.6), for exponential OSrps H(t) =h(t) =e™, 0<t<oo. Then the integral (5.6)

is straightforward to evaluate, yielding (5.10) below. Alternatively (5.10) can be derived by
well -known results for Poisson processes. See e.g. Rosén (1997a), Remark 2.2.

8, O 9, 0,
BV i1, pyereyiy) = e e (5.10)
20 X6 e e

Even if (5.10) is simple, the associated formula for 7 (n) obtained by combining (5.3) and
(5.10) is computationally unfeasible already for quite small n, which illustrates (5.1).

5.2.2 Inclusion probabilities for Pareto OSFS with n=1

For Pareto OSFS matters become complicated already for n = 1, and we confine to that case.
As stated in (1.8), H(t)=1/(1+t) and h(t) =1/ (1 +1t)*, 0<t<oo. Hence, (5.6) and (5.3) yield;

(1) = 8(L:1) _T 8, dt B T dt
i a8 0 Jlavecy ca+v?-Jla+eesen’

The integral (5.11) is treated in Section 5.2.4. Formulas (5.11), (5.21) and (5.22) yield, when
all intensities are different;
N 8, log@,/0,
m(l)= =—+86,.- ) —= EL . where Qk)=]]@®,-9). (5.12)
Q(1) ;(ek -0,)-Q(k) ]J;! ‘ !

(5.12) certainly exemplifies the point in (5.1).

(5.11)

5.2.3 Inclusion probabilities for OSFS with one odd unit

We consider the following particular situation, called a situation with one odd unit: All pop-
ulation units but one have the same intensity. Let 1 be the “odd” unit, with intensity 0;, while
units 2, ...,N have intensities 6,. Then, from (5.8) with i=1 we get;

P[D(v;t)]= (Nv— 1] [1-H(, -01" -H@, -t) V" =

Z(Nv_ l)'i@"‘”" HE, 9" (5.13)

p=0
Combination of (5.9) and (5.13) yields;
n-1 N _ 1 v v
o=y, |2 p |- (-D°-¥(N-1-v+piK), where (5.14)
v=0 p=0

K=0,/0,, (5.15)
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W(m;k) = [HE®, -0 0, -h(6, - t)dt = [H(x-t)™ - ht)dt . (5.16)
0 0

In (5.18)-(5.20) we present formulas for ¥(m; k) for the OSFS schemes of particular interest.
Once ;(n) is derived, the other inclusion probabilities are readily deduced by using the fol-

lowing facts: (i) T(n) = ... = Tn(m), (ii) inclusion probabilities sum to the sample size;
-7
r(n) = —, i=2,3,..,N. (5.17)
n-1
¥ for uniform OSFS

Here we have H(t) =1— min(t,1) and h(t)=1;o,;(t), 0 <t < oo, which yields;
1—[1—- min(k,1)]™"’

1
oY= [ = min(e.t ™ dt = 5.18
W(m; x) {[1 min(k-t , )] dt < ms D (5.18)
¥ for exponential OSFS
Here we have H(t) =h(t) =e™, 0 <t < oo, which yields;
°° 1
Y(m;K)=|e™ ™ e dt= . 5.19
(m; ) !e e di=—— (5.19)
¥ for Pareto OSFS
Here we have H(t) = /(1+t) and h(t) = 1/(t+1)2, 0 <t < oo, which yields;
. dt
W(m;K) = [ ~dt. (5.20)

A+ -(1+1)

The integral (5.20) is, in a more general version, considered in next section. Formulas (5.23)
and (5.24) together with the relation ¥(m; k) = I(m; K) provide expressions for ¥(m; ).

5.2.4 Evaluation of an integral
Here we consider the integral.

T dt
Im, k) = | : : 521)

oq+t?-JJa+k, 1)
k=1

Explicit expressions for I(m; ) depend on the number of k: s that agree. The results for two
particular cases are stated below. Empty product yields 1 and empty summation 0.

Case 1: K,k , ..., Ky are mutually different as well as different from 1.

I(m;5)=[ﬁ(1—'<k)} +2 1 log;ck [H(Kk —K )} : (5.22)
k=1 -

k=1 £zk

Case 2: All k;,K3,...,Kn have the same value K, which differs from 1.

1
I(m; = < oo . .
(m;K) - (1 )m+1 [ ), 0<Kk<ow, Kzl (5.23)
Power series expansion, in powers of 1 -k, in (5.23) leads to the following alternative formula;
1 N (1-K)*
Im;K) =——+m- , 3 .
(m;K) =——~+m g(m+k)-(m+k+l) O<k<2 (5.24)

Proof : I(m; K) has rational integrand, and can thus be evaluated by partial fraction expansion.
In Case 1 the expansion has the following structure;
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-1

[(1+t)2-H(1+Kk-t)} __4 =+ 5 +y S (5.25)

(1+1) I+t o l+k, -t

The values for A and C;, which are stated in (5.26), are obtained by the "standard method". To
obtain the value for B, multiply (5.25) by (1+t), and let t tend to o . Then the left hand side
and, hence, the right hand side tends to 0, which yields B.

=[H(1—Kk)} : [(1——) H(1—-)J ,k=1,...,m, B=—§m:%. (5.26)

k=1 £k k=1 k
By integrating (5.25);
T 1 = C,-logk,
I A- + C 27
(m:k) = j(1+t) el {(ka Kk-(1+t)] kz O
(5.27) and (5.26) now yield (5.22). In Case 2 the partial fraction expansion has the structure;
5 LT A B wl C,
[A+t* Q+k-p™] = T+, . (5.28)

A+t 1+t & d+k-t)-

The values for A, B and C; are as follows, where A is obtained by the standard method;

A=(-k)™, B= _ m-K C _Kz.(m—k+l)
- ’ - (I_K)m+l ’ k — (I_K)m-k+2

, k=1,2,...,m. (5.29)

Straightforward algebra yields;
[A+n*-d+x-=1"'- -7 __1 Em:( )k (5.30)
1+1> 1+t (1- K)“’“ “\l+k-t) ’

By combining (5.28) and (5.30) and letting t tend to -1, the value of B is obtained. Again by
straightforward algebra, using (5.30);

(1—|<)‘“‘+ 1 m-K
1+t 1+t Q-x)™

[a+0*-Q+k-p=] -

3 K)k 531
K-t) ' 3D

m k £ KZ m 1_
T (1-Kk)™? ZZ(1+K t] _(1—K)m+2'§(m'k+1)'(1+

1 ¢=1

Now (5.31) yields C;. Note that B=-C; /a. Hence we have the following expansion;

AC(I-IJ+i G, 5.32)
A+0? " 1+t k-(1+1)) S0+k-D* ©.

[a+0?-a+k-n=]" =

By integrating (5.32);

* m

lm; ) = A'[(1+t) '(’llﬂct K(l J 2 {(1+.< 0%

0
m—1 C
k+1

1
K =

C, -logk .

=A+ (5.33)

Combination of (5.33) and (5.29) yields (5.23). =
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5.3 Numerical findings for OSnps
5.3.1 Introduction and conclusions

Numerical studies of OSmps inclusion probabilities may yield insight into the approximation
goodness in (1.13), especially one may hope for answers to the following questions.

How large must the sample size be in a practical OS7tps situation in order that the
true inclusion probabilities should be sufficiently” close to the target ones? (5.34)

What rate of convergence in (1.15) is indicated by numerical findings ? (5.35)

For such a study one would like to dispose of numerically manageable formulas for a great
variety of OS7ps situations. However, we master just one nonfrivial situation, the one in Sec-
tion 5.2.3 for OSmps with one odd unit. Our study is therefore confined to this type of situation.
Accordingly we cannot draw comprehensive conclusions from the numerical findings.
Nevertheless we mean that they indicate quite strongly that answers to question (5.34) are
given by (5.36) and (5.37) below. These are our main conclusions from the numerical study.
The reader may agree or disagree after having looked at the subsequent tables.

For Pareto OStps, m;(n) differs only negligibly from A; if min (n,N-n) =5. (5.36)
Inclusion probabilities for uniform and exponential OS7wps also converge rapidly
to target values, but not as fast as for Pareto OSmps. (5.37)

Answers to question (5.35) are, however, out of reach for at least the following reason. Even if
the formulas in Section 5.2.3 hold mathematically for arbitrarily large N and n, the binomial
coefficients make them numerically unstable already for fairly small n and N.

5.3.2 Computation procedure for OSnps with one odd unit

Generally, approximation goodness in (1.13) depends on the values of the parameters A , N,
and n in the situation under consideration. As regards A - values we make the following obser-
vations. Condition (4.5) indicates that the closer the maximal A; lies to 1, the larger n - value is
needed to achieve good approximation. On the other hand, in practice, A - values very close to
1 are avoided by forming a "certainty stratum" for units with very large size measures. More-
over, the log(1/4; ) term in the error bound in (4.3) indicates that large n-values are needed to
hold down the relative approximation error for a small A;. Therefore, when varying n and N we
think it is instructive to consider situations with (i) prescribed maximal A, (ii) prescribed ratio
between the maximal and minimal A. In terms of size measures the latter means prescribed
ratio between the largest and smallest size measure values. The bigger the prescribed values in
(1) and (ii) are, the larger n is presumably required for good approximation.

For OSmps with one odd unit there are two different A - values, A; for the odd unit and A, for
the non-odd units. By (1.2), A; and A, relate as follows;

Az = (n-A;)/(N-1). (5.38)
The computation procedure runs as follows. When one of A; and A, is decided on, the other
follows from (5.38). Having A; and A,, the associated intensities 8; = H'(A;) and 8, = H'(A,)
can be computed, and they yield Kk in (5.15). Then the formulas in Section 5.2.3 can be set in

work to compute 7t;(n). Once 7;(n) is known, 7,(n) for the non -odd units is obtained by using:
(1) the non-odd =: s are equal, (ii) inclusion probabilities sum up to the sample size;

m,(m)=(n-m,(n)/(N-1). (5.39)
As regards absolute and relative approximation errors, note that (5.38) and (5.39) yield;
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T,(Mm)—A, = —(n,(m)-A,)/(N-1), (5.40)

7, (n) L A, T,
—7»2 1= kz-(N—l)'( A, lj. (5.41)

These formulas show that the inclusion probability for the odd unit has the lager absolute error
and, unless A is very small, also the larger relative error.

The numerical study comprises two blocks, "sitnations with fixed A" respectively "situations
with fixed ratio A;/ A,". Under these fixations, N and n were varied, and the corresponding
inclusion probabilities were computed.

Situations with fixed A,

For prescribed A, - values, different population sizes N were considered and for each N the
sample size was run over all possible values, n=1,2,...,N-1. Note the following. For the con-
sidered A, - values, 0.2, 0.5 and 0.7, A; =2 A, for N>5. Hence, A, is the largest target inclusion
probability.

Tables 1 - 5 present m;(n) - values for uniform, exponential and Pareto OSmps, denoted by
nti(n; U), mi(n; E) and m;(n;P) respectively. Values for A,/ A, are also presented. We could not
go further than N=30, because numerical instability turned up for larger N -values.

Situations with fixed A-ratio
Here values for the ratio p=A,/A; were prescribed. By (1.2) we have;
A, =(@-n)/(N-1+p) and A, =n/(N-1+p). (5.42)

Note that a given p = A,/ A, is not compatible with arbitrarily large sample sizes, since (5.42)
may lead to A or A, that exceed 1. ""Misses" are reported by blank cells in the tables.

For given p, the values of A; and 7;(n) were computed for a variety of N - and n - values, for
uniform, exponential and Pareto OSmps. From Tables 1-5 is seen that approximation errors (as
can be expected) are largest at the ends of the region of possible sample sizes, i.e. for n: s that
are small or close to N. Since sampling rates very close to 1 are quite uninteresting from a
sampling practical point of view, we confined to sample sizes up to 10, in order to mitigate
numerical instability problems. We presume that approximations are only better as n increases,
until it comes very close to N.

To test the approximation goodness in as demanding situations as possible, we used as large as

possible p - choices, under the restriction that sample sizes up to n=35 should be admissible.
The results are presented in Tables 6- 11. For N= 100, the blank cells for n = 7 and 8 depend

on numerical instability.

5.3.3 Results for situations with fixed 2,

Table 1. Inclusion probabilities for some different A, N=5
n M= 0.2 M= 05 M= 07
M m(MU) m(ME) mniP) | /A mi(mU) mi(mE) ma(n;P) [ A /A, min;U) m(nsE) m(n;P)

1.0 0200 0200 0200} 40 0610 0565 0535 | 93 0807 0794 0.766
04 0178 0.187 0.196 1.3 0529 0510 0505 | 22 0741 0.720  0.712
03 017F 0176 0.189 | 0.8 0480 0.492  0.495 1.2 0719 0704 0.703
02 0168 0.140 0.129 | 06 0457 0466 0465 | 08 0.679 0.695  0.693

W -
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Table 2. Inclusion probabilities for some different A, N=10
n A.«] = 0-2 1.1 - 0-5 ;\.1 - 0.7
M, mmU) m(mE) m@m;P) | A /A, ®mi(mU) mi(mE) m(n;P) | A/A; mi(m;U) mi(niE) ma(n;P)
1 23 0.224 0210  0.203 9.0 0.623 0.574 0537 | 21.0 0811 0.798 0.766
2 1.0 0200 0200 0.200 3.0 0.564  0.523 0.508 4.8 0.748 0.726 0.712
3 0.6 0.193 0.196  0.199 1.8 0.535 0.510  0.503 27 0736 0.712 0.705
4 |05 018 0194 019 | 1.3 0514 0504 0501 | 1.9 0729 0706  0.703
5 0.4 0.187 0.192 0.199 1.0 0.500 0.500 0.500 1.5 0.721 0.703 0.702
6 0.3 0.186 0.190 0.198 0.8 0.491 0.497 0.499 1.2 0.711 0.701 0.701
7 0.3 0.185 0.187 0.196 0.7 0.485 0.493 0.497 1.0 0.700 0.700 0.700
8 0.2 0.185 0.181 0.189 0.6 0.480 0.489 0.492 0.9 0690  0.699 0.698
9 02 0.184 0.151 0.129 0.5 0.476 0.472 0.463 0.8 0.683 0.697 0.690
Table 3. Inclusion probabilities for some different A, N=15
n )»1 = 0.2 A.-g - 0.5 Aq - 0.7
M mmU) m(mE) m(m;P) [ A /A, m(mU) mi(mE) mi(niP) | A7A; m(m;U) m(m;E) m(n;P)
1 35 0.232 0.213 0.204 | 140 0.626 0.577 0.538 | 32.7 0.812 0.799 0.766
2 1.6 0.207  0.203 0.201 4.7 0.571 0.527 0.508 7.5 0.750  0.728 0.712
3 1.0 0.200 0.200 0.200 2.8 0.547 0.514 0.503 4.3 0.739 0.714 0.705
4 0.7 0.196 0.198  0.200 20 0.530 0.508 0.502 30 0733 0.708 0.703
5 06 0.194 0.197 0.200 1.6 0518 0.505 0.501 23 0729 0.705 0.702
6 0.5 0.193 0.196  0.200 1.3 0.509 0.503 0.500 1.8 0.724 0.704 0.701
7 04 0.192 0.195  0.199 1.1 0.503 0.501 0.500 1.6 0719 0.702 0.701
8 04 0.191 0.195 0.199 0.9 0.498 0.499 0.500 1.3 0714 0.701 0.701
9 0.3 0.191 0.194 0.199 0.8 0.494 0.498 0.500 1.2 0.708 0.701 0.700
10 0.3 0.190 0.193 0.199 0.7 0.491 0.497 0.499 1.1 0.703 0.700 0.700
11 0.3 0.190  0.191 0.198 0.7 0.489 0.495 0.498 1.0 0.698 0.700 0.700
12 0.2 0.190  0.189  0.196 0.6 0.487 0.493 0.497 09 0694 0.700 0.699
13 | 02 0190 0.183 0.190 0.6 0.485 0.490 0.492 0.8  0.691 0.700 0.698
14 | 02 0.189  0.155 0.130 | 0.5 0.484 0476  0.462 0.7 0.688  0.699 0.689
Table 4. Inclusion probabilities for some different A, N=20
n 1.1 = 0.2 A.«] = 0.5 1.1 = 0.7
Ay m(mU) m(mE) m(niP) [ AR, mi(nsU) m(nE) mi(niP) [ A /A mi(mU) mi(niE) m(n;P)
1 4.8 0.235 0214 0204 | 19.0 0.628 0.578 0.538 | 443 0812 0.799 0.766
2 2.1 0.211 0.205 0.201 6.3 0.575 0.528 0.508 102 0.751 0.728 0.712
3 1.4 0.204 0.202 0.200 3.8 0.552 0.516 0.504 58 0.740 0.715 0.705
4 1.0 0.200 0.200 0.200 2.7 0.537 0.510 0.502 4.0 0.735 0.709 0.703
5 0.8 0.198 0.199 0.200 2.1 0.526 0.507 0.501 3.1 0.731 0.706 0.702
6 07 0.197 0.198 0.200 1.7 0.518 0.505 0.501 25 0.728  0.705 0.701
7 0.6 0.196 0.198 0.200 1.5 0.511 0.503 0.500 2.1 0.724  0.703 0.701
8 0.5 0.195 0.197 0.200 1.3 0.507 0.502 0.500 1.8 0.721 0.702 0.701
9 04 0.194 0.197 0.200 1.1 0.503 0.501 0.500 1.6 0717 0702 0.700
10 | 04 0.194 0.196 0.200 1.0 0.500 0.500  0.500 1.4 0.713 0.701 0.700
11 04 0.194 0.196 0.200 0.9 0.498 0.499  0.500 13 0.710  0.701 0.700
12 | 03 0.193 0.195 0.199 0.8 0.496 0.499 0.500 1.2 0706 0.700 0.700
13 | 03 0.193 0.195 0.199 0.8 0.494  0.498 0.500 1.1 0703  0.700 0.700
14 0.3 0.193 0.194  0.199 0.7 0.493 0.497  0.499 1.0 0.700 0.700 0.700
15 | 03 0.193 0.193 0.199 0.7 0.491 0496  0.499 0.9 0.698  0.700 0.700
16 | 0.2 0.192 0.192 0.198 0.6 0.490 0.495 0.498 0.9 0695 0.700 0.700
17 02 0.192 0.190  0.196 0.6 0.489 0.494  0.496 0.8 0.694  0.700 0.699
18 0.2 0.192 0.184 0.190 0.5 0.489 0.491 0.492 0.8 0.692 0.700 0.697
19 0.2 0.192 0.158 0.130 0.5 0.438 0.478 0.462 0.7 0.690  0.700 0.688
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Table 5.  Inclusion probabilities for some different i N=30

n A-1 = 0-2 ;\,1 = 0.5 )\.1 = 0.7

My mmU) m(nE) m(n;P) | A4, m(mU) m(mE) mi(mP) | A4 mnyU) mi(mE) mi(n;P)
1 73 0.239 0.216 0.204 | 29.0 0.629 0.579 0.538 67.7 0.813 0.800 0.766
2 3.2 0.215 0.206 0.201 9.7 0.578 0.530 0.508 156 0.751 0.729 0.712
3 2.1 0.207 0.203 0.200 5.8 0.557 0.517 0.504 8.8 0.741 0.716 0.705
4 1.5 0.204 0.201 0.200 4.1 0.544 0.512 0.502 6.2 0.736 0.710 0.703
5 1.2 0.201 0.201 0.200 3.2 0.534 0.508 0.501 4.7 0.733 0.707 0.702
6 1.0 0.200 0.200 0.200 2.6 0.526 0.506 0.501 3.8 0.730 0.705 0.701
7 0.9 0.199 0.200 0.200 2.2 0.520 0.505 0.501 3.2 0.728 0.704 0.701
8 0.7 0.198 0.199 0.200 1.9 0.515 0.504 0.500 2.8 0.725 0.703 0.701
9 0.7 0.198 0.199 0.200 1.7 0.512 0.503 0.500 2.4 0.723 0.703 0.700
10 0.6 0.197 0.199 0.200 1.5 0.509 0.502 0.500 2.2 0.721 0.702 0.700
11 0.5 0.197 0.198 0.200 1.4 0.506 0.502 0.500 2.0 0.718 0.702 0.700
12 0.5 0.197 0.198 0.200 1.3 0.504 0.501 0.500 1.8 0.716 0.701 0.700
13 0.5 0.196 0.198 0.200 1.2 0.503 0.501 0.500 1.7 0.714 0.701 0.700
4 | 04 019 0198 0200 [ 1.1 0501 0500 0500 [ 1.5 0711 0.701  0.700
15 0.4 0.196 0.198 0.200 1.0 0.500 0.500 0.500 1.4 0.709 0.701 0.700
16 | 0.4 019 0.197 0200 [ 09 0499 0500 0500 [ 1.3 0.707 0.701  0.700
17 03 0.196 0.197 0.200 0.9 0.498 0.499 0.500 1.2 0.706 0.700 0.700
18 0.3 0.196 0.197 0.200 0.8 0.497 0.499 0.500 1.2 0.704 0.700 0.700
19 0.3 0.195 0.197 0.200 0.8 0.496 0.499 0.500 1.1 0.703 0.700 0.700
20 0.3 0.195 0.197 0.200 0.7 0.496 0.499 0.500 1.1 0.701 0.700 0.700
21 03 0.195 0.196 0.200 0.7 0.495 0.498 0.499 1.0 0.700 0.700 0.700
22 0.3 0.195 0.196 0.200 0.7 0.495 0.498 0.499 1.0 0.699 0.700 0.700
23 0.3 0.195 0.195 0.199 0.6 0.494 0.497 0.499 09 0.698 0.700 0.700
24 0.2 0.195 0.195 0.199 0.6 0.494 0.497 0.499 0.9 0.697 0.700 0.700
25 0.2 0.195 0.194 0.199 0.6 0.493 0.497 0.499 0.8 0.696 0.700 0.700
26 0.2 0.195 0.193 0.198 0.6 0.493 0.496 0.498 0.8 0.695 0.700 0.699
27 0.2 0.195 0.191 0.196 0.5 0.492 0.495 0.496 0.8 0.695 0.700 0.699
28 0.2 0.195 0.186 0.190 0.5 0.492 0.492 0.492 0.7 0.694 0.700 0.697
29 0.2 0.195 0.161 0.130 0.5 0.492 0.480 0.462 0.7 0.693 0.700 0.688

5.3.4 Results for situations with fixed A-ratio
Table 6. Inclusion probabilities for some different A -ratios N=15
n lll;\.2=3 lllkz=2 A.]/;t.z= 0.2
M om(mU) m(mE) mmP)| A mi(mU) mi(mE) m(m;P) | A, mi(n;U) mi(n;E)  ma(n;P)

1 [0.176 0.200 0.186 0.179 [0.125 0.133 0.129 0.126 {0.014 0.013 0.014 0.014
2 [0.353 0.396 0.368 0.357 |0.250 0.267 0.257 0.251 {0.028 0.027 0.027 0.028
3 0529 0580 0545 0533 [0375 0399 0383 0377 |0.042 0.040 0.041  0.042
4 |0.706 0.738 0.714 0.708 {0.500 0.530 0.508 0.502 {0.056 0.053 0.055 0.056
5 |0.882 0.857 0.876 0.883 |0.625 0.656 0.631 0.627 |0.070 0.067 0.068 0.070
6 - 0.750 0.769 0.752  0.751 |0.085 0.080 0.082 0.084
7 - 0.875 0862 0870 0.875 [0.099 0.093 0.095 0.098
8 - - 0.113 0.107 0.108  0.112
9 - - 0.127 0.120 0.122  0.126
10 - - 0.141 0.133  0.134  0.140
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Table 7. Inclusion probabilities for some different A -ratios N=20
n ;bll;\v2=4 )\-I/A—2=2 ;\.1/).2= 0.2
A mmU) m(MmE) mmP)| Ay mmU) m(mE) m(mP)| Ay mi(nU) m{mE) mu(n;P)
1 |0.174 0.199 0.184 0.176 [0.095 0.100 0.097 0.096 }0.010 0.010 0.010 0.010
2 10.348 0.395 0.364  0.352 |0.190 0.200 0.194 0.191 [0.021 0.020 0.020 0.021
3 10522 0576 0.538 0.526 |0.286 0.300 0.291 0.287 10.031 0.030 0.031 0.031
4 10.696 0.731 0.705 0.698 10.381 0.400 0.387 0.382 [ 0.042 0.040 0.041 0.042
5 10870 0.848 0.865 0.870 | 0.476 0.499 0.482 0.477 10.052 0.050 0.051 0.052
6 - 0.571 0.597 0.577 0.572 10.063 0.060 0.061 0.062
7 - 0.667 0.691 0.670 0.667 |0.073 0.070 0.071 0.073
8 - 0.762 0.778 0.763 0.762 |0.083 0.080 0.081 0.083
9 - 0.857 0.853 0.854 0.857 10.094 0.090 0.091 0.094
10 - 0.952 0912 0.945 0.952 }10.104 0.100 0.101 0.104
Table 8. Inclusion probabilities for some different i -ratios N=25
n A.I/I,2=4 ;\.1/}»2=2 X1/A.2=0-2
A m(nU) mi(mE) mi(mP)| Ay mi(mU) m(nE) mi(mP)| A m(nU) m(nE) m(n;P)
1 |(0.143 0.160 0.150 0.144 | 0.077 0.080 0.078 0.077 10.008 0.008 0.008 0.008
2 10286 0319 0.298 0.288 [0.154 0.160 0.157 0.154 |0.017 0.016 0.016 0.017
3 [0.429 0474 0.442 0.431 [0.231 0.240 0.234 0.231 {0.025 0.024 0.024 0.025
4 10571 0618 0.584 0.574 | 0308 0.320 0.312 0.308 |0.033 0.032 0.032 0.033
5 |0.714 0.744 0.721 0.716 |0.385 0.400 0.390 0.385 10.041 0.040 0.041 0.041
6 ]0.857 0844 0.854 0.858 |0.462 0.480 0.467 0.462 |0.050 0.048 0.049 0.050
7 - 0538 0.559 0.543 0.539 10.058 0.056 0.057 0.058
8 - 0.615 0.637 0.619 0.616 |0.066 0.064 0.065 0.066
9 - 0.692 0.713 0.695 0.693 |0.074 0.072 0.073 0.074
10 - 0.769 0.784 0.770 0.770 |0.083 0.080 0.081 0.083
Table 9. Inclusion probabilities for some different A -ratios N=30
n )\.1/}.2=5 )\.1/A.2=2 )\-1/;\.2= 0.2
Av mmU) m(nE) m(iP)| Ay m(mU) m(mE) mi(mP)| A, m(niU) m(mE) mi(n;P)
1 10.147 0.166 0.155 0.149 |0.065 0.067 0.066 0.065 |0.007 0.007 0.007 0.007
2 10294 0.331 0.307 0.297 10.129 0.133 0.131 0.129 }0.014 0.013 0.014 0.014
3 10441 0.491 0.456 0.444 10.194 0.200 0.196 0.194 10.021 0.020 0.020 0.021
4 |0.588 0.637 0.601 0.591 ]0.258 0.267 0.261 0.258 10.027 0.027 0.027 0.027
5 10735 0.761 0741 0737 0323 0333 0326 0323 [0034 0033 0034 0.034
6 [0.882 0.856 0.877 0.883 | 0.387 0.400 0.391 0.388 10.041 0.040 0.040 0.041
7 - 0.452 0.467 0.456 0.452 |0.048 0.047 0.047 0.048
8 - 0.516 0.533 0.520 0.517 ]0.055 0.053 0.054 0.055
9 - 0.581 0.4599 0.584 0.581 |0.062 0.060 0.061 0.062
10 - 0.645 0.664 0.648 0.646 |0.068 0.067 0.067 0.068
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Table 10. Inclusion probabilities for some different A-ratios N=50

n 11/1.2:8 )»1/2,2:3 1.1/)\.2=0.2

A mnU) m(mE) m{mP)| Ay m(nU) m(mE) mmP)| Ay m(niU) m(mE) mi(n;P)
1 ]0.140 0.160 0.148 0.142 10.058 0.060 0.059 0.058 [0.004 0.004 0.004 0.004
2 |0.281 0.318 0294 0.283 |0.115 0.120 0.117 0.116 |0.008 0.008 0.008  0.008
3 [0.421 0471 0.436 0424 |0.173 0.180 0.176 0.173 10.012 0.012 0012 0.012
4 |0561 0.613 0.575 0.564 10.231 0.240 0.234 0.231 |0.016 0.016 0016 0016
5 [0.702 0.736 0.710  0.703 |0.288 0.300 0.293 0.289 ]0.020 0.020 0.020 0.020
6 ]0.842 02833 0.840 0.843 |0.346 0.360 0.351 0.347 10.024 0.024 0.024 0.024
7 10982 0.903 0.973 0982 [0.404 0.420 0.409 0.404 10028 0.028 0.028 0.028
8 - 0.462 0.480  0.466 0.462 |10.033 0.033 0.033  0.033
9 - 0.519 0.540 0.524 0.520 }0.037 0.037 0.037 0.037
10 - 0.577 0.599 0.581 0.577 |0.041 0.041 0.041 0.041

Table 11. Inclusion probabilities for some different A-ratios N=100

n )»1/7\.2=8 )\.1/;\.2=3 ).1/%.2: 0.2

A m(mU) m(mE) m(nP)| A mi(nU) mi(mE) m(mP)| Ay mi(mU) m(nE) m(n;P)
1 |0.075 0.080 0.077 0.075 }0.029 0.030 0.030 0.029 {0.002 0.002 0.002 0.002
2 |0.150 0.160 0.154  0.150 {0.059 0.060 0.059 0.059 |0.004¢ 0.004 0.004  0.004
3 |0.224 0240 0230 0225 {0.088 0.090 0.089 0.088 |0.006 0.006 0.006  0.006
4 ]10.299 0.320 0.306 0.300 {0.118 0.120 0.119 0.118 }0.008 0.008 0.008 0.008
5 {0374 0400 0382 0375 |0.147 0.150 0.148 0.147 [0.010 0.010 0.010 0.010
6 (0.449 0479 0.456 0.449 [0.176 0.180 0.178 0.177 |0.012 0.012 0.012 0.012
7 10.523 0.206 0.210 0.208 0.206 }0.014 0.014 0.014 0.014
8 ]0.598 0.235 0.240 0.237 0.235 |0.016 0.016 0.016 0.016
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