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On Inclusion Probabilities 
for Order Sampling 

Bengt Rosén 

Abstract. 
A1? A.2,..., A.N denote target inclusions probabilities for a, possibly approximate, 7tps sampling 
scheme with (fixed) sample size n from a size N population, and 7C](n), rc^n),... ,%(n) the fac
tual inclusion probabilities. Using results for order sampling (Rosén 1997a) the author exhib
ited (in Rosén 1997b)a class of approximate Ttps schemes, order 7rps (OSrcps) schemes, and 
advised allied estimation procedures. These procedures were derived from limit results for lin
ear statistics, and no per se study of the 7Cj(n) was needed. The (asymptotic) 7ips property of the 
OS7rps schemes was proved on a "macro" level, to the effect that the quasi Horvitz-Thompson 
estimator with A; instead of 7tj yields consistent estimation. 

The chief result in the present paper is that the asymptotic Tups property holds also on "micro" 
level, i.e. that the individual TÇ hes close to the target A,i, i.a. we show that (1) below holds 
under general conditions. Special attention is paid to certain particular OSrcps schemes : uni
form, exponential and Pareto OSrcps. 

7Ti(n)/A.i —> 1, as sample size n (and population size N) tend to infinity, i = l,2,...,N. (1) 

As main technical tools we derive error bounds for a generalized version of the approximation 
7Ci(n)=A.j, valid for general order sampling. The error bounds are used to prove the convergence 
in (1), and also to provide information on convergence rates. 

We also consider exact formulas for Tt;, a main aim being to show how unmanageable such 
formulas become when n and N are not very small. In spite of this, manageable formulas are 
derived for a specific, non - trivial OSrcps situation. They are used in a numerical study of the 
goodness of the approximation 7ij ~ A.;. The findings indicate that Pareto 7tps yields best 
approximation, and suggest the following rule of thumb : For Pareto OSrcps, 7ti(n) differs only 
negligibly from Ai if min (n,N-n) > 5. 
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On Inclusion Probabilities for Order Sampling 

1 Basic notions and outline of the paper 
A means for utilizing auxiliary information in sample surveys is 7tps sampling, i.e. sampling 
(without replacement) with inclusion probabilities proportional to given size measures. Rosén 
(1997b) introduced a novel class of ftps schemes, called order 7tps schemes, and advised 
procedures for point and variance estimation for such schemes. These procedures are based on 
results for a more general notion called "order sampling" introduced in Rosén (1997a). We 
start by reviewing the definitions of the sampling schemes. 

1.1 Definition of order sampling, notably order πps sampling 
The following definition is structured by successive specialization : Order sampling - order 
sampling with fixed distribution shape - order Tips sampling. 

DEFINITION 1.1 : To each unit k in a population U=(1,2,...,N) is associated a probability 
distribution Fk(t) with density fk(t), 0 < t < °°. A sample size n, n< N, is prescribed. 
a. Order sampling with sample size n and order distributions F = (F!, F2,..., FN) is 

carried out as follows. Independent ranking variables Q,, Q2,..., QN with distri
butions Fj, F2,..., FN are realized. The units with the n smallest Q - values consti
tute the sample. The scheme is referred to by OS(n ; F). 

b. H(t) is a probability distribution with density h(t), 0 < t < <», and 0=(8{, 82,..., 8N) 
are given positive real numbers. Order sampling with fixed shape distribution H, 
intensities 8 and sample size n is OS(n;F) with the following order distributions; 

Fk(t) = H(t-8k), withdensity fk(t) = 8k-h(t-8k), 0<t<«>, k= 1,2,....N. (1.1) 
The general scheme is referred to by OSFS(n;H;8). Particular schemes are named 
by their shape distributions. 

c. X = (X j , . . , XN ) are given real numbers which satisfy ; 

(1.2) 

Order Tips sampling with sample size n, shape distribution H and target inclusion 
probabilities X is OSFS(n;H;8) with intensities; 

(H " ' denotes inverse function). (1.3) 

The general order ftps scheme is referred to by OS7tps(n;H;À). Particular OSrcps 
schemes are named by their shape distributions. 

We will pay special attention to schemes with the following shape distributions. 

(1.4) 
The corresponding OSrcps scheme, uniform OSnps, has intensities; 

(1.5) 

(1.6) 

The corresponding OSnps scheme, exponential OSups, has intensities ; 

(1.7) 

(1.8) 

The corresponding OSrcps scheme, Pareto OSnps, has intensities; 

(1.9) 
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1.2 Outline and main results 
In the sequel TCJ has its usual sampling theory meaning; 

rç(n) = inclusion probability for unit i in a sample of size n, i = 1,2, ...,N. (1.10) 

The point and variance estimation procedures in Rosén (1997a&b) are derived in a somewhat 
non - standard way. Instead of "usual" estimators (of Horvitz - Thompson and Sen - Yates -
Grundy type) based on known inclusion probabilities, the estimators are deduced from limit 
results for linear statistics. This approach circumvents the obstacle that numerically manage
able formulas for inclusion probabilities are unfeasible for order sampling. In the limit 
approach no per se study of inclusion probabilities is needed. Matters work the other way 
round, the estimators yield conjectures about approximate Tt; -values, as stated below. 

APPROXIMATE INCLUSION PROBABILITIES : Consider general order sampling 
OS(n; F), and let | be determined by the relation; 

(1.11) 

Then the following approximation works well under general conditions ; 

(1.12) 

For OS7tps(n;H;A:), (1.12) specializes, for any shape distribution H, to; 

(1.13) 

Remark 1.1: Details on the specialization of (1.12) to (1.13) for OSîcps are given in Section 3 
Rosén (1997 b), in particular the following technical result, which will be useful later on. 

For an OSTrps scheme, the solution to equation (1.11) is | = 1. n (1.14) 

In Rosén (1997a & b) is shown that asymptotic correctness of (1.12) and (1.13) holds on 
"macro" level, in the sense that the "quasi" Horvitz -Thompson estimator with X\ instead of Tii 
yields consistent estimation. A chief aim in the present paper is to provide justification also on 
"micro" level, i.e. that individual Ttj lie close to the corresponding target value A-i. hi other 
words, we justify that OSTrps schemes asymptotically live up to their Tups name, m Section 4 is 
proved that, under general conditions, (1.13) holds for the OSnps schemes of particular inter
est, uniform, exponential and Pareto OSTrps, to the following effect. 

7ti(n)/À.i-> 1, as the sample size n tends to infinity, / = 1,2,...,N, (1.15) 

where the limit frame - work is the customary one in finite population sampling contexts, a 
sequence of populations whose sizes of tend to infinity is considered. 

The main technical tools in the proofs are theoretical error bounds for the approximations 
(1.12) and (1.13). Even if OSirps lies in our focus of interest, the derivation of error bounds is 
most comprehensible when made for general order sampling, which is the task in Section 2. hi 
Section 3 the bounds are specialized to the OSTrps schemes of particular interest. 

The error bounds also yield results about the rate of convergence in (1.15). These results fur
nish more direct proofs of the fact shown in Rosén (1997 a & b) that the point estimator yields 
consistent estimation, i.e. that relative estimation errors are asymptotically negligible. They 
also provide information on the rate of convergence to 0 for estimator biases. Li Section 4 we 
also discuss the following matter. The approach in this paper does presumably not lead to best 
possible orders of magnitude for the error bounds. However, derivation of sharper bounds 
would increases the complexity of the problem dramatically. 

2 



Even if limit results of type (1.15) have theoretical interest, they are less interesting from a 
practical point of view. Then one wants to know if the approximation (1.13) works sufficiently 
well in a specific finite situations. The theoretical error bounds are, as usual, not sharp enough 
to yield practically interesting information, hi Section 5 we consider exact formulas for 7ti. The 
chief aim is, however, not to exhibit formulas for practical use, rather to show how 
unmanageable such formulas become when n and N are not very small. In spite of this, rea
sonably manageable formulas are derived for a specific, but non - trivial and fairly general, 
OS7tps situation. These formulas are used in a numerical study of the goodness of the 
approximation (1.13). Even if we cannot draw comprehensive conclusions from the numerical 
findings, we mean that they quite strongly indicate the following result. 

For Pareto OSnps, TÇ differs only negligibly from À; if min (n,N-n) > 5. (1.16) 

The findings also indicate that 7tj converges quite rapidly to Xi for uniform and exponential 
OS7rps as well, but Pareto Tips is the scheme with best approximation. 

Notation used throughout the paper : P, E, V and D = -J\ denote probability, expectation, 
variance and standard deviation. 1(C) stands for the indicator of the set/event C, and # C for 
the number of elements in it. The natural logarithm is denoted by log. 

2 Error bounds for general order sampling 
2.1 The basic estimate 
We start with a notation. 

DEFINITION 2.1 : For a (fixed) population unit /, set; 

(2.1) 

Then, for 0 < y < N - l , 

Xi (y) is the solution to the equation (in t) : Gj(t)=y, i= 1,2,.. .,N, (2.2) 

The following lemma will be basic in our study of the approximation error in (1.3). 

LEMMA 2.1: Consider OS(n;F) from U. F j© and &, i eU, are specified by (1.11) and 
(2.2). Presume that the following conditions are met for some b > 1, some % and some p;. 

(2.3) 

(2.4) 

(2.5) 

Then the inequality below holds ; 

(2.6) 

Proof: We regard n and b > 1 as fixed, and introduce the following short notation; 

(2.7) 

As in Definition 1.1, Ql5 Q2,-.., QN denote the ranking variables. Introduce the variables Ai and 
Bi, which count the number of Q:s with values less than c^ and \|/i respectively ; 

(2.8) 

Since the sample consists of the units with the n smallest outcomes of 
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l(unit i is included in the sample) > 1(A; < n) • l(Qi < to 0, (2.9) 

l(unit i is not included in the sample) > l(Bi > n) • l(Qj > ipO. (2.10) 

The independence of the Q:s yields that die events to the right in (2.9) are independent. The 
same holds for (2.10). By using this and taking expectation we get; 

(2.11) 

(2.12) 

From (2.11) and (2.12) follows ; 

(2.13) 

With t interpreted as "time", %i(y) is the time when G;(t) crosses the level y. In the same vein, ^ 
in (1.11) is the time when Gi(t) crosses the level n-Fi(|). This together with the fact that Gi(t) 
is non-decreasing as t increases and 0 < Fi(!p < 1 yields; 

(2.14) 

(2.15) 

To pursue the estimate (2.15) we start by estimating max{ Fi(D -Fi(cûO, F ^ ) - Fi(£p}. The 
mean value theorem tells that F;(t) - Fi© = (t - ̂ ) • fi(6) for a 0 between t and | . This together 
with (2.3) yields; 

(2.16) 

We employ the following estimate in (2.16), with G; as in (2.1) and G' denoting derivative; 

(2.17) 

By (2.1) and (2.7), Gj©=n-Fi(S) and Gi((ûO=n-b. Moreover, (2.4) states that Gi'(t) is > pi on 
the interval [d)i„\|/i]. Hence (2.17) yields; 

(2.18) 

By analogous arguments follows; 

(2.19) 

The estimates (2.16), (2.18) and (2.19) yield; 

(2.20) 

Next we estimate the tail probabilities P(A; > n) and P(Bj < n). Ai in (2.8) can be viewed as a 
sum of independent Bernoulli variables Xk = l(Qk ^ ^ 0 , k=i, with means E[Xk ] = Fk(û)i) ; 

(2.21) 

We use the "exponential bound" estimate in Lemma 2.2 below. First, by (2.21), standard for
mulas for Bernoulli variables, (2.7), (2.1) and (2.2) ; 

(2.22) 

(2.23) 

Lemma 2.2 together with (2.21), (2.22) and (2.23) yield (2.24) below. Note that (2.5) and 
(2.23) imply that 1 < D(A) < Vn; 

(2.24) 
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Quite analogously, the relations 

(2.25) 

(2.26) 

together with a straightforward modification of Lemma 2.2 yield (2.27) below. Note that (2.5) 
and (2.26) imply that 1 < D(B;) <-Vn + b . 

(2.27) 

Now (2.24) and (2.27) imply; 

(2.28) 

Insertion of the estimates (2.20) and (2.28) into (2.15) yields (2.6). a 

We conclude by deriving the exponential bound inequality that was used above. The result in 
following lemma goes back on Kolmogorov. For completeness and for exhibition of explicit 
constants we give a proof, though, which in essence is that of Proposition (i) in Section 18.1 in 
Loève (1955). Recall that D denotes standard deviation. 

LEMMA 2.2: Let S = Xi +X2+... +Xm be a sum of independent Bernoulli variables. 
Provided that D(S) > 1 we have; 

(2.29) 

(2.30) 

By taking expectation in (2.30) we get, with pk = E(Xk) ; 

(2.31) 

By expanding in power series and taking expectation we get; 

(2.32) 

using these estimates in (2.32) together with we get, provided that 

(2.33) 

By employing (2.33) in (2.31) and noting that 2kV(Xk) = D(S)2 we get; 

(2.34) 

(2.35) 

Thereby the lemma is proved. « 

2.2 More explicit versions of the error bound 
In Lemma 2.1, b is an optional parameter which remains to be chosen. The choice is a bit 
involved, though, since b enters in the bound (2.6) as well as in conditions (2.3) - (2.5). To 
untangle the situation we start with an auxiliary algebraic result. 
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LEMMA 2.3 : Presume that p/y > e. Let b be the positive root to the equation ; 

(2.36) 

Then; 

(2.37) 

(2.38) 

(2.39) 

Insertion of (2.39) and the right hand side estimate in (2.37) into the left hand side of (2.38) 
yields the right hand side of (2.38). ö 

THEOREM 2.1: Consider OS(n;F) from a population in which i is a specific unit. Let 
Fj© and %i be according to (1.11) and (2.2). Moreover, let y;, Pi, (ö; and \|/j be quantities 
such that pj/Yi > e, and such that the following conditions are met; 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

Then; 

(2.45) 

Proof: The claim (2.45) is obtained by applying Lemma 2.1 with b as stated in Lemma 2.3 and 
by using the estimate (2.38). Note that the left inequality in (2.37) tells that b > 1. n 

Next we formulate a version of Theorem 2.1 with more easily checked conditions. However, it 
requires additional assumptions, notably that the order distribution densities are decreasing. 

THEOREM 2.2 : Consider OS(n; F) from a population in which i is a specific unit. 
Let "E, and Fj(D be according to (1.11). Presume that; 

(2.46) 

(2.47) 
Set; 

(2.48) 

Let \|/i and (û, be quantities such that the following conditions are met; 

(2.49) 

(2.50) 
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(2.51) 

Let pi satisfy; 

(2.52) 

Then, provided that K/Y, > e we have ; 

(2.53) 

Proof: In the first round we disregard (2.48), and interpret K in (2.49), (2.50) and (2.53) as a 
synonym to p; in (2.52). Under this premise we show that (i) - (iv) imply (2.40) - (2.44). Then 
(2.53) follows from (2.45). 
It is readily seen that (2.46) and (2.47) imply (2.40), and (2.46) and (2.52) imply (2.41). Set; 

(2.54) 

For Gi(t) in (2.1) we have Gj(t) > G(t)-1, Thus (2.47) (with K=pO implies (2.42). To show that 
(2.50) (with K=pi) implies (2.43) note that, by (2.46), the derivative G'(t) is non - increasing. 
Hence G(t) is convex (upwards). Thus the curve y = G(t) lies under any of its tangents. By 
drawing the tangent in t = | and paying regard to (1.11), which says that G © = n, we get; 

(2.55) 

(2.55) in combination with G(t) > Gj(t) yields; 

(2.56) 

Now (2.56) implies that (2.43) is satisfied. Finally, (2.44) follows from (2.51) together with 
the observation that Fk(t) • (1 -Fk(t)) < 0.25, k= 1,2,...,N. Hence the result is proved for K = pi. 

Next we take the actual K into account, and we start with the following observation. If the 
theorem with (2.48) omitted holds for K = Ko, it holds for any K > Ko , since (2.49) - (2.51) 
become more restrictive and the bound (2.52) more generous if K is increased. So far the theo
rem has been proved for K = pi. Under (2.46) holds, as is readily checked, that K in (2.48) is 
greater than p; in (2.52). Hence, the theorem is true in the given formulation, n 

3 Error bounds for OSπps inclusion probabilities 
3.1 Error bounds for OSπps schemes with decreasing shape density 
Here we specialize Theorem 2.2 to OSnps schemes. To make the result easy to apply in par
ticular situations we give it an algorithmic structure. 

THEOREM 3.1 : Consider OS7ips(n;H;À) from a population, in which / is a specific 
unit. Presume that, where h as usual denotes the density of H; 

h(t), 0 < t < o o , is non-increasing. (3.1) 

Step 1: With intensities according to (1.3), i.e. 

(3.2) 

set; 
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(3.3) 

and determine an a i such that; 
(3.4) 

Step 2: Determine a \|fi so that the following inequality is satisfied ; 

(3.5) 

Step 3: With 

(3.6) 

determine an CO; so that the following inequality is satisfied; 
(3.7) 

Then, 
Step 4: provided that the following condition is met; 

(3.8) 

Step 5: and p; satisfies ; 

(3.9) 

Step 6: the following error bound holds ; 

(3.10) 

Proof: The result will be derived from Th. 2.2. The relation f;(t) = 8i • h(t • 60 in (1.1) together 
with (3.1) implies (2.46) and (2.47) with y{ = 8; -h(0). ft in (3.3) takes the value ft = log(K/Yi). 
The relation Fj(t) = H(t-9;) in (1.1) yields that (3.5) is a version of (2.49), and that (2.51) spe
cializes to (3.8). By (1.14), which states that | = 1, and fi(t) = 8i • h(t • 90 is seen that (3.7) 
implies (2.50). Likewise, (3.9) implies (2.52). Finally, (3.10) is the present version of (2.53). n 

In the following we apply Theorem 3.1 to the OSnps schemes that are specified by (1.4)-(1.9). 
Our main aim is to exhibit background results for the limit considerations in Section 4. There
fore we do bother about achieving "good constants". 

3.2 Error bound for uniform OSπps 
THEOREM 3.2 : Consider uniform OSrcps(n ; À) from a population in which i is a 
specific unit. Then; 

(3.11) 

(3.12) 

(3.13) 

provided that the following conditions are met; 
(3.14) 
(3.15) 
(3.16) 
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Proof: We follow the algorithm in Theorem 3.1. H and h are stated in (1.4), from where it is 
seen that (3.1) is satisfied. As stated in (1.5), 8k = A.k, k = 1, 2, ... , N, which together with 
(1.2) yields ps in Step 1, ft = logn + log(l/A.i). We chose cti likewise; 

(3.17) 

(3.18) 

In Step 2 we first note that (1.4) and (1.5) yield; 

(3.19) 

By this and (3.18), (3.5) becomes iifj-n^n + n-•$;+! , which implies that (3.5) holds for; 

(3.20) 

In Step 3 is readily seen that 8 in (3.6) equals n. Hence, an admissible o)i is; 

(3.21) 

In Step 4 we use the estimate ; 

(3.22) 

The function to the right in (3.22), B(t) = n-t-(l->i-t), is convex (upwards). Thus its minimum 
over [œ i,y; ] is attained in either of the end points. Hence, (3.8) is satisfied if B((0 0 and B(i|fi) 
both exceed 1.25 which, by (3.20) and (3.21), leads to (3.14) and (3.15). We also used that 
tyi < l/X, which is taken care of by (3.16). 

In Step 5, when \\T{< 1/A. the value of the sum in (3.9) can be calculated, which we chose as pi ; 

(3.23) 

Finally, insertion into (3.10) yields (3.11). n 

3.3 Error bound for exponential OSπps 
THEOREM 3.3: Consider exponential OSrcpsOi;!) from a population in which / is a 
specific unit, and let k be according to (3.12). Then; 

with (3.24) 

(3.25) 

provided that the following conditions are met; 
(3.26) 
(3.27) 
(3.28) 

Proof: Again we follow the algorithm in Theorem 3.1. H and h are stated in (1.6), from where 
it is seen that (3.1) is satisfied. By (1.7) we have; 

(3.29) 

The elementary inequalities below will be useful; 
(3.30) 
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In Step 1 we start with the following estimate, where (3.30) is employed; 

(3.31) 

From (3.3), (3.31) and (3.29) + (3.30) follows that an admissible di is; 

(3.32) 

By using (a+bf < 2 • (a2 + b2) in (3.32), and log [n/(l -A.)]<Vn we get with fl; as in (3.25) ; 

(3.33) 

Next we prepare for Step 2. Since H(t) = 1 - exp(-1) is convex (upwards), so is 

(3.34) 

Hence G(t) lies above its chords, which for the chord from t = 1 to t = 2 implies : G(t) > G(l) + 
(t-1) • [G(2)-G(l)], 1 < t < 2. In combination with G(l)=n and 

(3.35) 

which by (3.33) yields that (3.5) is satisfied for; 

(3.36) 

We prepare Step 3 by the following inequality, where (3.30) is used; 

(3.37) 

From (3.37) and (3.33) is seen that an admissible CO; is; 

(3.38) 

We now turn to Step 4. By (1.6) and (1.7) we have; 

The last sum is a convex (upwards) function of t and, hence, it lies above its chords. By using 
this for the chord from t=0 to t=2 we can continue the inequality as follows ; 

The final function (of t) in (3.39), B(t) = 0.5 • t • n • (1 - A.)2, is linear. Thus its minimum over the 
interval [(ûi,\|/; ] is attained in either end point. Hence, (3.8) is satisfied if B(G)J) and B(\|/Ï) both 
exceed 1.25, which leads to (3.26) and (3.27). 

We turn to step 5 and exhibit a p; which satisfies (3.9). Here we impose the condition \|fj < 2, 
which is taken care of by (3.28). Then we have by the estimates in (3.30) ; 

Right hand side in 

(3.40) 

Hence, the right hand expression in (3.40) is an admissible p ; . Insertion of this pi into (3.10) 
together with (3.29)+(3.30) and (3.33) yields the bound in (3.24). n 
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3.4 Error bound for Pareto OSπps 
THEOREM 3.4: Consider Pareto OS7rps(n;À) from a population in which i is a specific 
unit. Let X and "d; be according to (3.12) and (3.25). Then; 

(3.41) 

provided that the following conditions are met; 

(3.42) 

(3.43) 

Proof: Again we follow the algorithm in Theorem 3.1. H and h are stated in (1.8), from where 
it is seen that (3.1) is satisfied. By (1.9) ; 

(3.44) 

In Step 1 we start with the estimate ; 

(3.45) 

From (3.45) and (3.3) is seen that; 

(3.46) 

Hence, (3.32) yields an admissible ex, also here, and (3.33) applies. We turn to Step 2 and start 
with the estimate; 

(3.47) 

From (3.47) and (3.33) is seen that (3.5) is satisfied if; 

(3.48) 

Under the additional assumption 1 < î i < 1.2, (3.48) implies that (3.5) is satisfied for; 

(3.49) 

In Step 3 we use the estimate ; 

(3.50) 

From (3.50) is seen that the following û); makes (3.7) satisfied; 
(3.51) 

Next we prepare Step 4. For 1 < \|/; < 1.2, we have; 

(3.52) 
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The last function in (3.52), B(t) = 0.7 • t • n • (1 - k), is linear. Thus its minimum over [C0j, ipi ] is 
attained in either end point. Hence, (3.8) is satisfied if B(fa)i) and B(\|/;) both exceed 1.25, 
which is implied by (3.42). The assumption 1 < \|Ti < 1.2 is taken care of by (3.43). 
We turn to Step 5 and exhibit a p; which makes (3.9) satisfied. Under l<\ | / i<1.2we have; 

Right hand side in (3.9) = 

(3.53) 

The last expression in (3.53) is an admissible p;. Insertion into (3.10) of this p; together with 
(3.44) and (3.33) yields the bound in (3.41). n 

4 Asymptotic results 
4.1 Generalities 
The error bounds in Sections 2 and 3 yield information about the asymptotic behavior of OS :tj 
(n) : s. The frame-work for limit consideration is as follows. A sequence, indexed by q= 1,2,3, 
.., of OS(nq ; E^q)) from a population of size Nq is considered. A sub - or superscript q signifies 
that a quantity relates to the q:th situation. We aim at results of the following type. 

(4.1) 

Results of type (4.1) for general OS may be derived along the following lines. Start from either 
of Theorems 2.1 and 2.2, and formulate conditions on Nq, F(q) and nq which imply that the 
theorem holds with vanishing approximation error as q—» <». However, the required conditions 
become quite involved when formulated for general OS situations. We therefore confine to the 
OSîrps schemes of special interest. 

4.2 Limit results for OSπps schemes 
We consider OSrcps with sample size n<, from a population of size Nq, in which i is a specific 
unit, q= 1,2,3,.... The target inclusion probabilities and their maximal values are denoted; 

(4.2) 

THEOREM 4.1 : For uniform, exponential and Pareto OSTrps holds; 

(4.3) 

provided that the following conditions are met; 

(4.4) 

(4.5) 

(4.6) 

Proof: The claims in the theorem follow readily from Theorems 3.2, 3.3 and 3.4. The details 
are left to the reader, n 

Remark 4.1: Condition (4.5) implies that sampling fractions stay away from 1 uniformly in q; 
(4.7) 
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This is realized from the inequality À(q) > n<, / Nq, which follows from ( 1.2). o 

Remark 42: If target inclusion probabilities are of the same order for all population units 
(uniformly in q), i.e. if the following condition is met; 

(4.8) 

we have for any i ; 

(4.9) 

provided that (4.4), (4.5) and limsupq->.» (logNq)/nq =0 hold. If also sampling rates stay 

away from 0 uniformly in q, i.e. nq/Nq > d > 0, q= 1,2,3,..., we have for any /; 

(4.10) 

The result (4.9) is realized as follows. By (4.8), X{ > À(q)/c. Combined with À.(q) > nq/Nq this 
yields A; > nq/(c• Nq), which in turn yields log(l/A.O < logNq + loge, which implies (4.9). n 

4.3 On estimator bias under OSπps sampling 
We consider estimation of the population total t(y) = yi + y2 + • - • + yN from y - observations of 
the units in an OSnps sample with target inclusion probabilities A. = (Al5 A2,..., AN). Let luh, ••, 
IN denote the sample inclusion indicators, i.e. Ik = 1 if unit k is sampled, and 0 otherwise. The 
natural estimator of t(y), and the one advised in Rosén (1977b), is ; 

(4.11) 

By taking expectation in (4.11) we get; 

(4.12) 

Remark 4.2 tells that, under general conditions, (%J Ak -1) is of order at most 0(logn/Vn). 
This together with (4.12) yields that under general conditions we have; 

(4.13) 

(4.13) shows that the estimator (4.11) is consistent under general conditions. It should be noted 
that the error order estimate in (4.13) is conservative, i.a. to the effect that no regard is paid to 
cancellation effects from alternating signs of (nk/ Ak -1). Moreover, as discussed in next sub -
section, the error order 0(logn/Vn) for fak/Ak -1) is probably also conservative. In any case, 
(4.13) shows that (4.11) yields consistent estimation under very general conditions. 

4.4 Comments on the order of the approximation error 
A natural question is if the error order 0(logn/Vn) for (îtk/ Ak -1) is the correct one. Our con
jecture is, regrettably, that it is not. We believe, based on arguments provided by colleagues, 
that the correct error order rather is 0(l/n). However, as indicated below the approach in this 
paper cannot yield better than O(logrWn). 

The estimates in (2.11) and (2.12) disregard the event cûi<Qi < \|/i. As a consequence, the error 
bound (2.6) is at least P(û)i<Qi<\|Ti). For this term to be small, C0i and \|A shall lie close. This is 
counterbalanced by the desire that P(Aj< n) and P(Bi> n) in (2.11) and (2.12) should be close 
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to 1. We believe that the balancing is carried out fairly optimally when yielding order 
O(logrWn). Hence, to obtain a sharper bound, one must be more deep-going in the analysis of 
what happens near ^. This, however, increases the problem difficulty dramatically. 

Other indications that the correct error order is not reached are as follows, (i) Simulation find
ings in Rosén (1997b) on estimator bias comply better with 0(l/n). (ii) By a "direct" analysis, 
Ohlsson (1990) shows that for uniform OSîrps, (4.13) holds with error order 0(1/Vn). 

5 On exact formulas for OSFS inclusion probabilities 
In this section we derive some exact formulas for OSFS inclusion probabilities. One aim is to 
illustrate the following point. 

Although OSFS is simple in definition and implementation, computation of inclusion 
probabilities is exceedingly hard if the sample size is not very small. (5.1) 

However, for a certain non - trivial situation, computationally manageable formulas can be 
derived, and this is a second aim. The resulting formulas are then used in a numerical study of 
the goodness of the approximation (1.13). 

5.1 Inclusion probabilities for general OS schemes 
A suggestive language for describing an OS (n ; F) sample is as follows. The population units 
have independent random life lengths Q; with distributions Fj, /= 1,2,... ,N. The sample con
sists of the n units which die first. Set, where we presume that the arguments in S are different; 

S(v ; ij,i2,..., iv) = P (unit ii dies first, i2 dies second,...., iv is the v:th unit to die). (5.2) 

We have ; 

(5.3) 

An expression for the S: s is stated in (5.5) below, where we use the notation; 

(5.4) 

(5.5) is justified as follows. Death order ii,i2,... ,iv occurs if, for ti< t2 < ...< tv and infinitesi
mal dti,dt2,...,dtv, unit ii dies during the time interval [ti,ti+dti), unit i2 during [t2,t2+dt2),..., 
unit iv during [tv,tv + dtv), while the other units survive time tv + dtv . Since life lengths are 
independent we get by summing (= integrating) over the possibilities for (ti, t2,..., tv ) ; 

(5.5) 

5.2 Inclusion probabilities for OSFS schemes 
By (1.1), (5.5) takes the following form for OSFS(n;H;0) ; 

(5.6) 

Formulas (5.3) + (5.5) provide one way to compute rç,(n). An alternative is presented below. 
Introduce the events, where i is a fixed unit and dt is infinitesimal; 

(5.7) 

(5.8) 
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The following holds: (i) D(v ; t) and D( p. ; t) are disjoint for v = JJ. (ii) C(t ; dt) and C(s ; dt) are 
disjoint for t= s. (iii) C(t ; dt) and D(v ; t) are independent, (iv) Unit / is sampled if C(t ; dt) and 
D(v ; t) occur with v < n. Combination of (i) - (iv) yields ; 

(5.9) 

We pursue this approach in Section 5.2.3 under special assumptions on the intensities. First we 
consider application of (5.3) to a case with general intensities. 

5.2.1 Inclusion probabilities for exponential OSFS 
As specified in (1.6), for exponential OSrcps H(t) = h(t) = e_ t , 0<t<«>. Then the integral (5.6) 
is straightforward to evaluate, yielding (5.10) below. Alternatively (5.10) can be derived by 
well-known results for Poisson processes. See e.g. Rosén (1997a), Remark 2.2. 

(5.10) 

Even if (5.10) is simple, the associated formula for 7t;(n) obtained by combining (5.3) and 
(5.10) is computationally unfeasible already for quite small n, which illustrates (5.1). 

5.2.2 Inclusion probabilities for Pareto OSFS with n = 1 
For Pareto OSFS matters become complicated already for n = 1, and we confine to that case. 
As stated in (1.8), H(t) = 1/(1 +1) and h(t) = 1 / (1 +1)2, 0<t<°°. Hence, (5.6) and (5.3) yield; 

(5.11) 

The integral (5.11) is treated in Section 5.2.4. Formulas (5.11), (5.21) and (5.22) yield, when 
all intensities are different; 

(5.12) 

(5.12) certainly exemplifies the point in (5.1). 

5.2.3 Inclusion probabilities for OSFS with one odd unit 
We consider the following particular situation, called a situation with one odd unit: All pop
ulation units but one have the same intensity. Let 1 be the "odd" unit, with intensity 0i, while 
units 2, . . . ,N have intensities 02. Then, from (5.8) with /= 1 we get; 

(5.13) 

Combination of (5.9) and (5.13) yields; 

(5.14) 

(5.15) 

15 



(5.16) 

In (5.18)-(5.20) we present formulas for W(m; K) for the OSFS schemes of particular interest. 
Once 7ti(n) is derived, the other inclusion probabilities are readily deduced by using the fol
lowing facts : (i) 7t2(n) = ... = TCNÖ), (ii) inclusion probabilities sum to the sample size ; 

(5.17) 

W for uniform OSFS 
Here we have H(t) = 1 - min(t, 1) and h(t) =1[0, i ](t), 0 < t < oo, which yields ; 

(5.18) 

W for exponential OSFS 
Here we have H(t) = h(t) = e - t , 0 < t < °o, which yields ; 

(5.19) 

W for Pareto OSFS 

Here we have H(t) = 1/(1 +1) and h(t) = l/(t+l)2, 0 < t < oo, which yields ; 

(5.20) 

The integral (5.20) is, in a more general version, considered in next section. Formulas (5.23) 
and (5.24) together with the relation W(m; K) = I(m; K) provide expressions for W(m; K). 

5.2.4 Evaluation of an integral 
Here we consider the integral. 

(5.21) 

Explicit expressions for I(m; K) depend on the number of K: s that agree. The results for two 
particular cases are stated below. Empty product yields 1 and empty summation 0. 

Case 1: Ki, K2,..., î n are mutually different as well as different from 1. 

(5.22) 

Case 2: All Ki, K2,..., Km have the same value K, which differs from 1. 

(5.23) 

Power series expansion, in powers of 1 -K , in (5.23) leads to the following alternative formula; 

(5.24) 

Proof: I(m; k) has rational integrand, and can thus be evaluated by partial fraction expansion. 
In Case 1 the expansion has the following structure; 
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(5.25) 

The values for A and Ck, which are stated in (5.26), are obtained by the "standard method". To 
obtain the value for B, multiply (5.25) by (1+t), and let t tend to °o. Then the left hand side 
and, hence, the right hand side tends to 0, which yields B. 

(5.26) 

By integrating (5.25) ; 

(5.27) 

(5.27) and (5.26) now yield (5.22). In Case 2 the partial fraction expansion has the structure; 

(5.28) 

The values for A, B and Ck are as follows, where A is obtained by the standard method; 

(5.29) 

Straightforward algebra yields ; 

(5.30) 

By combining (5.28) and (5.30) and letting t tend to -1 , the value of B is obtained. Again by 
straightforward algebra, using (5.30) ; 

(5.31) 

Now (5.31) yields Ck. Note that B=-Ci /a. Hence we have the following expansion; 

(5.32) 

By integrating (5.32) ; 

(5.33) 

Combination of (5.33) and (5.29) yields (5.23). 
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5.3 Numerical findings for OSπps 
5.3.1 Introduction and conclusions 
Numerical studies of OSJtps inclusion probabilities may yield insight into the approximation 
goodness in (1.13), especially one may hope for answers to the following questions. 

How large must the sample size be in a practical OSrcps situation in order that the 
true inclusion probabilities should be "sufficiently" close to the target ones ? (5.34) 

What rate of convergence in ( 1.15) is indicated by numerical findings ? (5.35) 

For such a study one would like to dispose of numerically manageable formulas for a great 
variety of OSnps situations. However, we master just one nontrivial situation, the one in Sec
tion 5.2.3 for OSTtps with one odd unit. Our study is therefore confined to this type of situation. 
Accordingly we cannot draw comprehensive conclusions from the numerical findings. 
Nevertheless we mean that they indicate quite strongly that answers to question (5.34) are 
given by (5.36) and (5.37) below. These are our main conclusions from the numerical study. 
The reader may agree or disagree after having looked at the subsequent tables. 

For Pareto OSTtps, Tij(n) differs only negligibly from A.; if min (n ,N-n) > 5. (5.36) 

Inclusion probabilities for uniform and exponential OS7rps also converge rapidly 
to target values, but not as fast as for Pareto OSTtps. (5.37) 

Answers to question (5.35) are, however, out of reach for at least the following reason. Even if 
the formulas in Section 5.2.3 hold mathematically for arbitrarily large N and n, the binomial 
coefficients make them numerically unstable already for fairly small n and N. 

5.3.2 Computation procedure for OSπps with one odd unit 
Generally, approximation goodness in (1.13) depends on the values of the parameters A., N, 
and n in the situation under consideration. As regards A - values we make the following obser
vations. Condition (4.5) indicates that the closer the maximal A,; lies to 1, the larger n-value is 
needed to achieve good approximation. On the other hand, in practice, A.-values very close to 
1 are avoided by forming a "certainty stratum" for units with very large size measures. More
over, the log(l IX\ ) term in the error bound in (4.3) indicates that large n-values are needed to 
hold down the relative approximation error for a small Aj. Therefore, when varying n and N we 
think it is instructive to consider situations with (i) prescribed maximal A., (ii) prescribed ratio 
between the maximal and minimal A.. In terms of size measures the latter means prescribed 
ratio between the largest and smallest size measure values. The bigger the prescribed values in 
(i) and (ii) are, the larger n is presumably required for good approximation. 

For OSitps with one odd unit there are two different A - values, A.) for the odd unit and A.2 for 
the non-odd units. By (1.2), A,i and A.2 relate as follows; 

(5.38) 

The computation procedure runs as follows. When one of A4 and A.2 is decided on, the other 
follows from (5.38). Having A-i and A.2, the associated intensities 6] = H"!(Ai) and 82 = H"1(A.2) 
can be computed, and they yield K in (5.15). Then the formulas in Section 5.2.3 can be set in 
work to compute iti(n). Once 7ti(n) is known, ic2(n) for the non-odd units is obtained by using: 
(i) the non-odd it: s are equal, (ii) inclusion probabilities sum up to the sample size ; 

(5.39) 

As regards absolute and relative approximation errors, note that (5.38) and (5.39) yield; 
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(5.40) 

(5.41) 

These formulas show that the inclusion probability for the odd unit has the lager absolute error 
and, unless X2 is very small, also the larger relative error. 

The numerical study comprises two blocks, "situations with fixed X\" respectively "situations 
with fixed ratio X\ / À2". Under these fixations, N and n were varied, and the corresponding 
inclusion probabilities were computed. 

Situations with fixed λ1 

For prescribed X\ - values, different population sizes N were considered and for each N the 
sample size was run over all possible values, n= 1,2,... ,N-1. Note the following. For the con
sidered X\ -values, 0.2, 0.5 and 0.7, X\ >A,2 for N>5. Hence, X,i is the largest target inclusion 
probability. 

Tables 1-5 present 7ti(n) - values for uniform, exponential and Pareto OSrcps, denoted by 
îti(n;U), 7ti(n;E) and 7ti(n;P) respectively. Values for À1/X2, are also presented. We could not 
go further than N=30, because numerical instability turned up for larger N- values. 

Situations with fixed λ-ratio 
Here values for the ratio p=XiA.2 were prescribed. By (1.2) we have; 

(5.42) 
Note that a given p = A.1/A.2 is not compatible with arbitrarily large sample sizes, since (5.42) 
may lead to X\ or X2 that exceed 1. "Misses" are reported by blank cells in the tables. 

For given p, the values of X\ and 7Ci(n) were computed for a variety of N - and n - values, for 
uniform, exponential and Pareto OS7tps. From Tables 1-5 is seen that approximation errors (as 
can be expected) are largest at the ends of the region of possible sample sizes, i.e. for n : s that 
are small or close to N. Since sampling rates very close to 1 are quite uninteresting from a 
sampling practical point of view, we confined to sample sizes up to 10, in order to mitigate 
numerical instability problems. We presume that approximations are only better as n increases, 
until it comes very close to N. 
To test the approximation goodness in as demanding situations as possible, we used as large as 
possible p - choices, under the restriction that sample sizes up to n = 5 should be admissible. 
The results are presented in Tables 6-11. For N= 100, the blank cells for n = 7 and 8 depend 
on numerical instability. 

5.3.3 Results for situations with fixed λ1 

Table 1. Inclusion probabilities for some different λ1 N=5 
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Table 2. Inclusion probabilities for some different λ1 N = 10 

Table 3. Inclusion probabilities for some different Λ1 N=15 

Table 4. Inclusion probabilities for some different λ1 N=20 
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Table 5. Inclusion probabilities for some different λ1 N=30 

5.3.4 Results for situations with fixed λ-ratio 

Table 6. Inclusion probabilities for some different λ-ratios N = 15 
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Table 7. Inclusion probabilities for some different λ-ratios N=20 

Table 8. Inclusion probabilities for some different λ- ratios N=25 

Table 9. Inclusion probabilities for some different λ- ratios N=30 
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Table 10. Inclusion probabilities for some different λ- ratios N=50 

Table 11. Inclusion probabilities for some different λ- ratios N=100 
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