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A T

Bengt Rosén 2000-12-29

Corrections to the Statistics Sweden R&D Report 2000:5,
B. Rosén: Generalized Regression Estimation and Pareto nps

The chief reason for this correction note is that I (a bit ashamed) have to call attention to a flaw due to
a programming error. Since a correction note is required, also "ordinary” printer’s errors are pointed out
(admitting that nowadays printer = author).

1 Correction of printer's errors (fa/fb = from above/below)

Page Row Reads Should be
3  18fa strategy which satisfies strategy satisfies
3 3fb Isyield the following yield the following
4 14fa studyy variable study variable y
4 20 (220) 2.22)
4 Vfa (220) 222)
4 19 (222)and(2.23) (2.24) and (2.25)
4 18fb (2.20) + (2.4 2.22) + 2.9
4 156 (2.23) 2.25)
5 3 221) + 24 2.22) + (24)
5 18/ (221) (2.22)
5 8 (21 2.22)
6 ifb REG GREG
9 U 47 4.6)
9 19fb for belief for the belief
9 14fb strategyis strategy performance is
10 18fa Although in addition to
11 8+fa RBPE =(E[t(¥))/t(¥)-1)-100%. (6.7)
13 14fa bar has
13 23fa The optimal strategy an optimal strategy
14 Table 6.2 should read as stated on next page.
16 1fa And A.6numerical and A.6 provide numerical

The ¢ - values should be read as in the subsequent
Tables A.13-A.18.

27-32
2 Corrections caused by the programming error
The last sentence in the paragraph on the middle of page 16 reads as follows :
The reason for blank columns under RESTD for spread magnitude c; is that we (in last
minute) came to suspect a program bug , which could not be sorted out.

The suspected bug turned out to exist. Its elimination affects the RBSTD - values at the bottom of
Tables A.13 - A.18. Corrected tables are presented on subsequent pages. The RBVE - values are
unchanged. As a consequence of the altered figures the last paragraph on page 16 should be modified
as stated below.

On the accuracy of approximate formulas for theoretical estimator variance : From a
practical point of view this issue is not important. The interesting aspect is if we could have
dispensed of all the simulations and compared strategies by using the approximate formulas
(5.3) and (4.5) instead of simmlations. Tables A.13 - A.18 show that the approximate variance
formulas mostly work with surprisingly good accuracy, also in situations with misjudged
superpopulation. However, a warning for [SRS , GREG] should be issued also here.



Corrected tables

Table6.2.  Studied strategies. True spread o is presumed to be proportional to x'.
Useof v
In design and estimator | In estimator only In design only Not at all
Correct spread guestimate
(PAR®Y),GREG()]
Inboth |Oversuestimtedspresd | {pAR(1),GREGH)]
design [PAR(y-1.2)),GREG(y - 1.2))
andesti- | [PAR(y-1.5),GREG(y - 1.5)]
mator Underguestimated spread
[PAR(y-0.8), GREG(y- 0.8)]
[PAR(y-0.5), GREG(y-0.5)]
Use of { In estima- s
. tor only [SRS,GREG(1)}
Correct spread
[ PAR(Y),mps ]
Overguestimated spread AR(1), 7ps)
oy PARG-12)ms] [
[PAR(y- 1.5) ,nps]
Underguestimated spread
[PAR(y-0.8)),7ps]
[PAR(y-0.5),mps ]
Not at all [SRS,HT}




A.2.2 Variance estimator bias and approximation accuracy for theoretical variances

Table A.13. RBVE and RESTD (in %) for test situations of Type A. See (6.8), (6.9) and Table 6.1.

n=10 n=25 n=50 n=380
Strategy and ¢ ¢ c c
variance estimator 09 | 18 | 3509 ]| 18 {3509 ] 18 |35]oo| 18 | 3s
RBVE in %
Correct spread guestimate
{PAR(®),GREG())/ V1 29| 53 |04 })-24] 58 [-84]1-13]| 40 | 4204 ] 18 | -81
[PAR(y), GREG()]/V2 041392717} 64 |-76}-09) 42 }-38] 07} 20 ] -19
[SRS,GREG(Y)}/Vi -120}-148) -76 | 51| 29 |92} -13 | 23 |-121} 37 | 06 | -63
[SRS,GREG()}/ V2 87 |-138) 49} 37] 39 |-77]-08] 27 |-118] 41| 08 | -60
[PAR(1),xps] 08 | 32 [-151-20} 22 |-63fJ-04} 30 |-21})-12} 25 |- 13}
{PAR(y),#ps} 04| 20 | 33 ] 42 64 | 5664 -1.7 | 06}-12} 25 | -13
[SRS,HT) 291 20 ] 44 ] 23 1.5 }-1.7142) 42 1 44})-39) 36 |} -65
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2))/V; | 26} 37 | 06} -16} 70 |-91}-10} 50 }-39] 19 | -06 | -72
[PAR(y-1.2)),GREG(y-1.2)]/V, } 01| 21 | 19 | -08] 76 [-82]-05] 53 |-35] 22 | -04 | -70
[PAR(y- 1.5), GREG(y-1.5)}/ V) 03] 3803 |-18} 47 |-70}-25] 39 | 22|01 ] -1.5 | 48
[PAR(y- 1.5), GREG(y-1.5)}/ V2 27 | -18 134107 56 |-57)1-18] 45 |-14] 06| -1.1 | 43
[PAR(y-1.2)),nps] 04| 05|27 126 69 |-68]-57] 03 |-1.2|-21}] 05| -54
[(PAR(y-1.5),7ps ] 01 | -14 ] 23120} 49 | 66}-31] 33 |-08]-64] -10 ] 42
Underguestimated spread
[PAR(y-0.8),GREG(y-0.8)]/V; 381 72 }-19)] 40} 58 | -88]-11] 45 | -591] 24 12 | 1.2
[PAR(y-0.8), GREG(y-0.8)}/ V2 12 59 100 )-32)] 64 | 81107} 48 |-55] 26 13 | -71
{PAR(y-0.5), GREG(y-0.5)]/ V3 68} 87 | 3724} 43 | -77]-10}] 45 | 69} 48 00 | -64
{PAR(y-0.5), GREG(y-0.5)}/ V2 38} -72 |-13f-14}] 51 | 68f-06] 48 | 65] 51| 02 | -6.2
[PAR(y-0.8)),7ps] 06) -21]|-03)29 ]| 47 00}]-55]-17]100]-27]-311]01
{ PAR(y-0.5),7ps] 00 {-L2 12127} 38 }-14}-53}]-20|-23])-32} -37|-28
RESTD in %
Correct spread guestimate
[PAR(Y).GREG(Y)] 20| 24 102)-14| 28 [ 42})-07] 19 |22]02] 08 | -41
[ SRS, GREG(Y)] -34] 40 ] -1.1 ] -1.6 27 -3.51 -02 1.7 58] 21 0.7 -2.8
[PAR(1),7nps] 0.1 -1.1 | -04 ] -09 13 25 0 16 | -10 } -0.2 14 | -04
[PAR(®y),nps] 02| 09 15§22}] 3226131 -081}-03]-9]}]-L7]-33
[SRS,HT]} 14|09 |21]12}08 |-07}%-21]-21]|-22]-06] -07]-06
Overguestimated spread
[PAR(y- 1.2)),GREG(y- 1.2)] 2221 {-11}-12] 32 {4871-06| 23 |-22} 08 ! -04 | -3.7
[PAR(- 1.5),GREG(y-1.5)] 19 ] 28 {-16|-16] 20 | 4215 16 |-15]-01} 09| 29
[PAR(y- 1.2)),7ps} 01} 02})12}13]) 34 ]-33)-28)01)]-06}-09] -011}-26
[PAR(-1.5),7ps ] 02|07} 14|11 ] 24 |34]-14] 18 |-04]-30{-04]-20
Underguestimated spread
[PAR(y-0.8),GREG(y-0.8)] -18| 28 1-08]-20] 30 | 43105} 23 |-30] 12 06 | -3.6
{PAR(y-0.5),GREG(y-0.5)] 26| 26 |-06)-08] 26 |-34f-03] 24 §-34}24] 01 |-31
[PAR(y-0.8)),7ps] 0206} 1417 24 [-19}-28]-09]|-04]-13] -15 -2l
[PAR(y-0.5),nps] 00} 05108 })14] 19 |06}-27] -10)-12]-15] -1.8 | -14




Table A.14. RBVE and RESTD (in %) for test situations of Type B. See (6.8), (6.9) and Table 6.1.

n=10 n=25 n=50 n=80

Strategy and ¢ ¢ c c
variance estimator 006|012 |]025]10.06] 012 16251006} 0.12 | 025]0.06 | 0.12 | 0.25

| RBVE In %
Correct spread guesiimate
[PAR(Y), GREG(1))/ V1 02 )31 }-13})-14] 52 |-54§-03] 36 |-32}-09] 23 ] -39
[PAR(y), GREG(Y))/ V2 02} -31]-13)-14] 52 |-54]-03] 36 |-32]-09] 23 | -39
[SRS,GREG())}/ V1 -1181-155]1 75| 571 28 | 80}]-13] 10 |-142] 31 | -06 | -55
[SRS,GREG(y)}/V2 -1081-170 | <71 | 49 ] 32 | -71 f-11} 12 |-139] 34 | 04 | 54
[PAR(1),nps] 02 { -31 |-13]-14]| 52 | -54] 03] 36 {3203 36 [-32
[PAR(),=ps] 02 } 31 }|-13})-14] 52 | -541-03] 36 |-32]-03} 36 }-32
[SRS,HT) 28 ] 23 | 45§20 15 j-14]) 44 ] 45| 53)-18] -19 | -1.5
Overguestimated spread

[PAR(y-1.2)),GREG(y-1.2))/V; | 34| 44 ]| -19] 30} 32 | 47| -30] 28
[PAR(y-1.2)),GREG(y-1.2)]/V, | 28| 37 | -14 ] 28| 35 | 47]-30] 29
{PAR(y-1.5),GREG(y-1.5)1/V3 74| 93 | 89]64) 00 }]-77]-70}] 02
[PAR(y- 1.5), GREG(y-1.5)]/V2 564§ 70 [ 7057 10 |72 64| 06

33]-12] 21 | -23
S53]1-39]) -l1 | 44
54§34 -11 | 47

[(PAR(y- 1.2)),%ps] 20 1 -13 1 -14 116} 50 [ -21]1-34] 00 | 42134} 23 )-15
[PAR(y-1.5),%ps ] 25115 | -32]15)] 3510433} -25}-28]07{ 01 ]-16
Underguestimated spread

[PAR(y-0.8), GREG(y-0.8)}/V; 16] 30 ] 09 J 09 67 | 68}-10] 31 |-38§-17] -21]-58
[PAR(y-0.8), GREG(y-0.8)}/ V2 .16 34 | 08 § 09] 65 | 69]-10] 31 |-37}-17] -21}-58
{PAR(y-0.5),GREG(y-0.5)1/V} 251 -55 109 }-33]55]-78J]00] 47 |-71} 11 ] 18 | -84
[PAR(y-0.5), GREG(y-0.5))/ V2 22| 60 | 10 [-32( 54 {-77]100] 46 |-71§ 12 18 | -84

{PAR(y-0.8)),%ps] 01124 }-01 06} 48 | 00} 221 27 100]}]-56} 22} 00
[PAR(y-0.5),nps} 01} -17 )40 J 40 ) 65 ) 44]-67] 33 ]|-28])-40] -39 | -68
RESTD in %

Correct spread guestimate

[PAR(Y), GREG(y)] 00 | -15]-06]08)] 24 ]-27]001} 17 [-16]-041] 11 |-20
[SRS,GREG(y)} 21133 ]1001}-15] 32 |25} 01 14 |67} 201} 03 § -23
[PAR(1),nps] 00 {-15|-06}]-08] 24 |-27§ 00 1.7 | -16 | 04 1.1 20
[{PAR(Y),nps) 00} -15 |06 08| 24 | 271 00 1.7 | -16 § -04 11 | -20
[SRS,HT] 131 10 (21 110¢ 08 {-05]-22]-22}-26]-09] 09} -07
Overguestimated spread

[PAR(y-1.2)),GREG(y-1.2)) 041 -13)103}1-11) 19 j-16]-10] 18 |-1.1]-01] 15 |05
[PAR(y- 1.5), GREG(y-1.5)] 10] 09104 104] 26 J-06})-12} 22 J02]06]| 19 ] 11
[PAR(y-1.2)),%ps] 221 02|05 13} 27 ]-08)-14) 02 1]-20]21 14 | -0.5
[PAR(y:1.5),mps ] 24112 (110820 31 J]07fj-07]-01]-03]06} 02]-06
Underguestimated spread

[PAR(y-0.8), GREG(y- 0.8)] 10| -14 1 02 } 06 32 |35} 05| 14 |-20]-09} -1.1 | -30
[PAR(y-0.5), GREG(y-0.5)} 07117109 }-15] 30 )-36101] 24]-35]06] 09 |43
[PAR(y-0.8)),xps] 00 -12j15]106) 25 |-36]-10] 13 |J-1.1]-26] -10]-30
[PAR(y-0.5),%ps] 01]-08 |18 ]21)] 33 1-20]-33]-161]-14}1-19] -19}-34




Table A.15. RBVE and RESTD (in %) for test situations of Type C. See (6.8), (6.9) and Table 6.1.

n=10 n=2§ n=50 n=80
Strategy and c C
variance estimator 3 131 3 7 3] 3 131 3 7 13
RBVE in %
Correct spread guestimate
[PAR(Y), GREG()}/Vy 59) 83 |41]1-19] 44 | 67]1-20]| 42 | 47} 54 | 09 | 63
[PAR(®),GREG())/ V2 19| 57 |05 06] 56 | -54]-15] 47 [ 42 58 1.2 | -60
[SRS,GREG(H))/Vy -106]|-1431-74 § -53 | 28 | 8071 -15]| 27 {-101] 47 | 1.7 | -68
(SRS,GREG()}/V2 62]-119)35}1-37] 41 } 64 -08] 32 } 95} 521} 21 ] -65
[PAR(1),xps] 191121134} 01| 57010} 20)|22f-12] 23] os
[PAR(Y), nps] 04 }1-10]07}26) 32 }|-11]-59]-15]|-13]-33]} -36]|-38
[SRS,HT]} 3212014019 1 08 2148} 43 140} 19| -19 ] -29
Overguestimated spread
[PAR(y-1.2)),GREG-1.2))/V; | 48| -79 |38} -38 | 51 [-71 §-21| 49 |-52] 46 | 23 | 58
[PAR(y-1.2)),GREG(y-1.2)1/V2 [ 09 53 1-031-24) 62 |-58])-15¢ 54 |46]§ 50 26 | -55
[PAR(y- 1.5),GREG(y- 1.9}/ V1 38] 73124142 58 }-77)1-27} 45 |-38] 27 ] 02 ] 68
[PAR(y- 1.5), GREG(y-1.5)}/ V2 02 | 45|12 1-30| 68 | 64 ] 221 49 |33} 30 ] 04 | -65
{PAR(y-1.2)),nps] 08 | 06 | 1.2 123} 39 |-221-79]| 25 |-27§-27} 43 ]-33
[PAR(y-1.5),xps ] 02]-13117126)] 41 |-36]-7111}) -131-07]-28]{-36 | -42
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8))/ Vy 57] 95| 47§36 38 |-71}-19] 37 |-55]48 | 18 {-59
{PAR(y-0.8), GREG(y-0.8)}/ V2 17170 |-12]-23¢ 48 | -58}1-13] 42 }-50] 52} 21 ] -56
[PAR(y-0.5), GREG(y-0.5)}/ Vy 821-105}65})-33) 37 }1-72}-18] 44 |1 -61]36] 31 }|-58
[PAR(y-0.5), GREG(y-0.5)}/ V2 40 80 1-291-19} 48 | -59§-12| 49 |]-55] 40 ] 34 | -55
[PAR(y-0.8)),nps} 061 -13 | 02} 07 1.3 00 §] 48| -1.1 J 00 ] -34} 35| 00
{PAR(y-0.5),%ps] 1709 161417 )15} 46]15]-15)-25] 32]-33
RESTD in %
Correct spread guestimate
[PAR(Y),GREG(Y)] 291 32 )|-15}]-08] 24 |30]-097] 22 |-23] 27 05 | 32
[SRS,GREG(y)] 35] 47 |-17] 20} 24 | -32]-04 1.7 | 48] 25 L1 | -32
[PAR(1),nps] 07] 06 | 031-06¢{ 10 {0006 12 |-14]1001} 13 | 07
[PAR(Y), 7ps] 01| 05)06)14)| 16| 04]20]07]06]26]-18]-19
[SRS,HT]) 15108 21 )10] 08 }J09]1-241]-211}-20}-09] -09]-14
Orverguestimated spread
[PAR(y- 1.2)), GREG(y- 1.2)] 26| 33 |-16]-18| 26 | 34]-10} 24 |26} 22} 11 ] -30
[PAR(y-1.5),GREG(y- 1.5)] 251 -35]-16]1-23| 27 | 39)-14{ 22 |-20] 13 ] 00 | -35
[PAR(y-1.2)),nps] 03 o02{t0j12119109140]|-121}-131-13]-22]{-17
[PAR(Y- 1.5),2ps ] o105 |11 ]t4] 21 |-15§-35]-06)-03(f-13]-18]-21
Underguestimated spread
{PAR(r-0.8), GREG(r-0.8)] 26) 36 |-15]-15) 22 31108} 19 }]-26]24] 09 }-29
{PAR(y-0.5), GREG(y-0.5)] 32 36 }-211-13}) 24 1 31}-07) 24 ]-29] 19} L7 | -28
[PAR(y-0.8)),7ps] 02)] 06107)04 ]| 07 |-10]-23]-05]-02]-7]-8]-20
[PAR(y-0.5),%ps) 08 | 03 10 ] 07 08 }06]-22] 07 ]|-07}-12] -16 | -16




Table A.16. RBVE and RESTD (in %) for test situations of Type D. See (6.8), (6.9) and Table 6.1.

n=10 n=25 n=50 n=80
Strategy and c
variance estimator 25 5 10 } 25 5 10 | 258 5 10 ] 25 5 10
RBVE in %
Correct spread guestinate
[PAR(y), GREG())/V1 41159 {00 ] 03] 54 -80])-50] 47 |-46]-24]| -051]-87
[PAR(y), GREG()1/V2 071 41 | 24 1.5 62 | -721-45] 50 | 42]-201| 02| -85
[SRS,GREG(M}/V} -153]-162) 80 -75| 09 | -85) -32 | 27 [-129] -19| 00 } -7.0
[SRS,GREG()1/Va <1151-147})-51 | 56 | 21 |71 ] -24 | 32 |-122}-15] 03 | -68
[PAR(1),nps] 281 34 | -1L1}-22] 19 48] 47| 52 |-22]-50} 32 }-13
[PAR(Y), nps] 04 | -11]30]40 ] 54 | 46]-76} -33 }-26]-33] -32 ] -66
[SRS,HT] 271 21 §391] 22 13 ] -17§ 48 ) 46 | 52| -18 1] -1.7 | -25
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)}/Vy | 34| 32 | 05} -05]| 69 | -84} 48] 61 | 43)-08} 05 |-76
{PAR(y- 1.2)), GREG(y- 1.2)]/ V2 00| -13§21108]| 78 |-75] 41} 65 |-38]-05| -03]-73
[PARGy- 1.5), GREG(y- 1.5)1/ V1 02 -25}110})08 )] 51 |-57}f-31] 59 |-26]491]-12 | -47
{PAR(y- 1.5), GREG(y- 1.5)1/ V2 37102141 ] 21 61 } 444§ -231 65 |-18}-44] 08 | 43
[PAR(y-1.2)),®ps] 04} 04 | 241221} 53 |-56]-71| -141}-29]-12] 00 | -53
{PAR(y-1.5),=ps ] 15]1 05 | 28 | 24} 43 |-50) 46| 13 |-23]-52] -14 | 42
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)]/V} -74 ] 80 |25 22| 47 |79} -39 ] 56 |-61]|-14] -05]-76
[PAR(y-0.8),GREG(y-0.8)]1/ V2 40| 63 03§10} 54 |-71|-34}] 59 |-58]-11} 03 ] -74
[PAR(y-0.5), GREG(y-0.5)1/V} 961 95 §1-461-41}] 30 |-67]|-39] 49 |-81] 06} -19 | -65
[PAR(y-0.5), GREG(y-0.5)1/ V2 58] -78 | -221-27)] 39 |-58}-33] 52 |-77}09{ -16 }-63
[PAR(y-0.8)),mps] 01 ]-11 |-04})261] 38 ]01]-61]-25}]001]-24]-26] 01
[PAR(y-0.5),nps] 07 | 04 | 14 § 26 | 33 |08 ) 49} 22 | -35]-31] 3.7} -34
RESTD in %
Correct spread guestimate
[PAR(y),GREG(Y)] 301 30 }-053-02] 26 |-39]-261] 22 |-23§-131} -03 ] 45
[SRS,GREG()] 14 | 41 | 06 | 41 28 | 23] 6.1 30 | 53166 | 14 | -24
{PAR(1),nps] 1] 15§ 00 01 13 §-18|-19§ 27 {-10f-22| 18 | -04
[PAR(Y),nps) 01| 05| 14 } 21 28 |21 ] -37 ) -16 | -12}-161} -1.6 | -33
[SRS,HT) 131 09 | 20] 11 07 | 07}-24}) 23}1-261-09] -08}-12
Overguestimated spread
[PAR(y- 1.2)), GREG(y- 1.2)] 38| 24 113117} 29 | 45})-36] 25 |-24]-16]| 06 ]| 40}
[PAR(y- 1.5),GREG(y- 1.5)} 33 ) 28 j-12]-22)f 16 | -371-37] 21 |-19}f-45] -1.2 | -28
{PAR(y-1.2)),7nps] 03402 |11 ])12) 27 j-26}-36} -07]-14}-05] 01 |-25
[PAR(y-1.5),7ps ] 08 | 0.1 17 y 13 1 22 |25 22} 08 |{-11]-24( -06 | -20
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)] 297] -323-101}] 01 27 1363107} 30 )]-29}06] 00 | -37
[PAR(y+0.5),GREG(y-0.5)] 10} -28 {08 ) 16 | 26 | 24| 16 | 32 |-35] 40} -02 | -28
[PAR(y-0.8)),7ps] 01 | 04 13115 20 {-14]-30}-13}-12]-12]-13]-23
[PAR(y-0.5),nps] 03] -02}]08]13 17 |03} -25]|-11}-17})-15] -16 | -1.7




Table A.17. RBVE and RESTD (in %) for test situations of Type E. See (6.8), (6.9) and Table 6.1.

n=10 n=25 n=50 n=380
Strategy and ¢ c c c
variance estimator 12 | 25 [ S50 | 12 | 25 | 50 | 12 | 25 | 50 | 12 | 25 | S0
RBVE in %
Correct spread guestimate
[PAR(), GREG()1/V1 34 ) 56 0808 39 }1-76§-65] 08 |-19}]-16] -1.8 | -84
[PAR®),GREG()1/V2 03 {31 [ 18122 50 |-67]-59]| 1.2 {-1.5})-12] -1.5 ] -81
[SRS,GREG()]/V} -1901-180| 97| -75| 21 | 83 |j 60 | 20 |-103}-30] -10 | -73
[SRS,GREG(}1/V2 144} -152 ] 65| 49}] 04 | 67] 48] -12 | 97[]-24} 05| -70
[PAR(1),nps] 27| 27 }-08}09 ] 20 |[-36]-52] 36 {-07]-31}§ 33 |-L1
{PAR(Y),7ps] 09 | 08 | 25 | 34 ] 46 | 42} -73| 36 | -1.5] 24 -29 | -62
{SRS,HT] 2.1 14 | 31 121§ 11 [-1L.7) 49} 48 | 481 -11} -10 | -23
Overguestimated spread
[PAR(-1.2)),GREG(y- 1.2)]/V -19) 22 | 08]-02) 48 |-76]-65] 13 |-22] 00 01 | -7.2
[PAR(y-1.2)),GREG(y-1.2)}/ V2 16 | 03 19 | 11 59 | 67]-59] 18 |-1.7] 04 | 04 | 69
[PAR(y- 1.5),GREG(y- 1.5)1/V) 1.7 | 03 12 120} 45 | 47]-51] 26 |-1.1]141}] -1.0 ] 47
[PAR(y-1.5),GREG(y- 1.5)1/ V2 47 { 22 43 132} 55 |-35]145] 32 |-04]-37] 06 | 42
[PAR(y- 1.2)),7ps} 09106 | 1916} 41 |-51}-71}) 27 |-20]-05] 04 | 49
[(PAR(y-1.5),7ps ] 1.7 | 12 25124 | 38 | 41]1-56] 03 |-15]-42] -13 | 4.1
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)1/V; 70| 78 | -33]-14| 26 |-7.1}-55] 22 |-33}-12] -1.5 | -70
[PAR(y-0.8), GREG(y-0.8)1/ V2 31| 54 |-09100)] 37 |63} 48] 27 {-29]-09] -1.2 | -69
[PAR(y-0.5),GREG(y-0.5)1/V) -1001 97 | 591 -39] 08 | 63]-62| 17 }-56]-09] -33 | -60
[PAR(y-0.5), GREG(y-0.5)]/V2 5470 ) -321-20] 21 |-53]-55} 22 |-51]-05] -30]-58
[PAR(y-0.8)),7ps ] 05| 08 | 04120 30 J01]-59]-25]001]-L71-211]01
[PAR(y-0.5),7ps ] 08 ] 03 110})22) 27 }-10}-58}) 28 }-27}-27] -34|]-32
RESTD in %
Correct spread guestimate
[PAR(y),GREG())] 26| -31|-09¢§01{ 19 |-37]-34] 03 |]-11}-09] -1.0 | 43
[ SRS, GREG()] 52 ] -20 | 02}107] 51 |-03 113 45 J-21]129} 49 | -07
[PAR(1),nps] 10} -12 101109 ) 14 |-13}]-24]| 19 |-03})-12] 18 | -02
[PAR(®),nps] 04104 ]12117]) 24 ]|-19}-36]-18}]-07}]-12]-141]-31
[SRS,HT] 101 06 | 16 1 10| 06 |-07] 24} -24 |-24}-06] -05 ] -L1
Overguestimated spread
[PAR(y- 1.2)), GREG(y- 1.2)] 371 26 |-17]-22] 13 | 44]-52] 04 ]-17]-19] -08 ] 41
[PAR(y- 1.5),GREG(y- 1.5)] 35] 28 }|-14fj-26] 03 |371-58] 03 {-16]-52] -21]-32
[(PAR(y-1.2)),nps] 05 03 09§08 ]| 21 |-24]1-36{-14]-10}-021] 03 |-24
{PAR(y-1.5),7ps ] 09 ] 05 {161 12] 19 [-21}-28} 00 |-07}-19| -05 ] -20
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8) ] -9 -28 [ -1 13| 23 |-29}-07{ 20 [-11] 16| 02 | -3.1
[ PAR(y-0.5), GREG(y-0.5)] 12§ -16 | -07§ 44§ 33 |[-13]130) 35 |-14}60 | 09 | 16
[PAR(y-0.8)),7ps] 03] -03 | 11} L1 16 | -13]1-30} -1.3 | -061-08 | -1.1 | -21
[PAR(y-0.5),7ps) 04 ] 02} 07 (] LI 14 | 041 29| -14 | -14]-13 ] -1.7 | -16




Table A.18. RBVE and RESTD in % for test situations of Type F. See (6.8), (6.9) and Table 6.1.

n=10 n=25 n=50 n=80
Strategy and c c c ¢
variance estimator 02104 |[07]02] 04 ]]07][]02] 04 ]107[f02] 04 | 07
RBVE in %
Correct spread guestimate
[PAR(), GREG®))/ V1 071 -30}1-121-06) 34 |44]-54] 28 1857031 19 |62
[PAR(), GREG(Y)}/ V2 63109 { 21 § 18] 48 | 32431228004 ] 23 |58
[SRS,GREG())/V; -1771-154 |-101} 34 ] 25 |70} 63 ] 01 |-131] 53 | 17 | -58
[SRS,GREGH)1/V2 -102]-125]| 66 ] -03 | 43 | -53]-50] 08 |-12431 60 ] 21 } 55
[PAR(1),xps] 18] 04 | 35} 28| 33 |-35]-27] 32|43} 21}] -04]-15
{PAR(Y),xps] 11| 42 | 31 1401 76 |-73§-65] 22 |09 ] 46] -16 {-79
[SRS,HT] 381 25 156 ] 23| 17 |-23]145] 40} -46]-29] 24 | -31
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)}/ V1 22 | -7 |14 02| 37 | -53])}-55]-29]80) 17 ) 06 |55
[PAR(y-1.2)),GREG(y-1.2)}/ V2 98 1 26 | 21 § 29| 54 |-38)42] 20]-72125] -01 }-50
[PAR(y- 1.5), GREG(y- 1.5)}/V} 81 | 11 JoOl1 J04} 27 | 34)69] 45]-63]-02] -38]-51
{PAR(y- 1.5), GREG(y- 1.5))/ V2 1701 68 | 54 § 40 | 53 | -10]-51} 32 149] 11 ] -28 | 42
{PAR(y- 1.2)),xps] 281 31§12 § 03| 84 | -831-36[ 48 {-21f-21] -021]-72
[PAR(y- 1.5),xps ] 16 | 42 | 09261 45 | 61 ]|-51)] 16 |-30] 22| -23 | -53
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)}/V} 151 49 | 301-17] 38 | 61]-34]-15]|93]12] 19 |-63
[PAR(y-0.8), GREG(y-0.8)1/ V2 531141011063 51 |-50]-24)]-09]-88})17] 22 | -6.1
[PAR(y-0.5),GREG(y-0.5)}/ V1 60] 80 | -36 [ 0.1 36 [ 5644 ] -12 | -89 ] 11 13 | -62
[PAR(y-0.5), GREG(y-0.5)}/ V2 12 ] 44 1041 26] 51 | 43]-34]| 06| 84]) 1L7]| 16 |-59
[PAR(y-0.8)),7ps ] 2] 41102129 60 {01364 L1 |OO(}-35]-21]00
[PAR(y-0.5),xps] 01)-22}122)130]| 47 [ 24|56} 01 |-18]-38] -33 | -39
RESTOIn%
Correct spread guestimate
[PAR(y), GREG(Y)] 26} -251-15}-10) 14 1-23]1-30] -16 | 44104} 07 }-32
[ SRS, GREG(y)] 81} 20|04 1167102 ]| 09 J150] 83 |-31}218}) 90 | 06
[PAR(1),nps] 0804 |-14) 19| 25 |} 03]-09}-11]-20]16] 01 |-04
[PAR(y),xps) 06|19} 15]20)| 38 |-34)J-31| 12 [04]-23] 08|40
[SRS,HT} 18} 11 27§ 12] 09 [-10F-22]-20)-23)-14] -1.2 |-15
Overguestimated spread
[PAR(y:1.2)),GREG(y-1.2)] 401 36| 251311 00 |-35]-55}-30]|49]-17] -1.8] -36
[PAR(y-1.5),GREG(y-1.5)} S50) 46 | 44 ] 51} -18 ] 35] 80} -53]-50]-45]}) 46 ] 4.1
[PAR(y-1.2)),xps} 1} -14 1 07 02 41 1 400-17) 24 |-1.0] 09 01 | -36
[PAR(y-1.5),nps ] 05| -18 J03})-11)] 26 |-281-23) 08 |-15] 12] -1.1 | -26
Underguestimated spread
[PAR(y-0.8),GREG(y-0.8)] 04 | -14 |12} 15)] 32 | 23109 ] 07 J1-41]34] 24 |-26
[PAR(y-0.5), GREG(y-0.5)] 37104 J0o6] 78] 59 |-07]57] 33 }|-27]88] 47 }|-14
[PAR(y-0.8)),%ps] 04 -18 |16 )17} 30 |-26}-31)] 06 |-06]-16])] -1.0 | -29
{PAR(y-0.5),xps] 01|-10|13}§15}) 24 |-11}1-28} 01 |-09¢7-18]}] -1.7{-19
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Generalized Regression Estimation
and Pareto ntps

Bengt Rosén

Abstract

The topic is encounter between generalized regression estimation (GREG) and Pareto nps
(mps for probability proportional to size), for a general and a special reason. The former is that
GREG is a way to employ auxiliary information which can be used for any probability sample
design. It is of interest to see what it leads to for a particular design as Pareto mps.

The special reason is as follows. The embryo to the GREG estimator was presented by Cassel
et al. (1976), where it appeared as a proxy for the estimator part in an optimal sampling -
estimation strategy, strategy standing for a pair [sample design, estimator]. They showed that
a strategy is optimal if the sample design belongs to a specific class of ntps schemes and the
estimator is what can be characterized as a "forerunner” to the GREG estimator. After Cassel
et al. (1976) much effort has been devoted to the estimator part of the optimal strategy but
only little to the design part, the mps scheme. A possible reason may be shortage of mps
schemes with attractive properties. However, at least in the author's opinion, Pareto 7ps is
such a wps scheme. Hence, it is of interest to revisit the optimal strategy problem by studying
the performance of strategies of type [Pareto mps , GREG]. On the basis of the Cassel et al.
results this strategy is conjectured to be close to optimal. The main conclusion from the find-

ings is that they strongly support the conjecture.
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Generalized Regression Estimation and Pareto nps

1 Introduction and outline

The theme in the paper is encounter between generalized regression estimation (GREG), for
which Sérndal et al. (1992) provide a basic and excellent source, and Pareto mps (with mtps for
sampling with probability proportional to given sizes), presented in Rosén (1997). There is a
general as well as a special reason why this encounter is of interest.

The general reason is that GREG is an approach to exploit auxiliary information, which can be
applied for any probability sample design. It is of interest to see what it leads to for the par-

ticular design Pareto nps.

The special reason is as follows. The embryo to the GREG estimator was presented in Cassel et
al. (1976), as a proxy for the estimator part in an optimal sampling - estimation strategy. Here
"strategy" stands for a pair [sample design, estimator] and optimal relates to expected variance
as specified in Section 2.3. Cassel et al. showed that optimal strategies are characterized by
sample design being a specific type of mtps schemes and the estimator a "forerunner" to the
GREG estimator.

Since Cassel et al. (1976) much effort has been devoted to the estimator part of the optimal
strategy but only little to the design part, the ps scheme. A possible reason may be shortage of
7ps schemes with good properties. However, at least in the author's opinion, Pareto 7tps is a
mps scheme with attractive properties. It has fixed sample size, simple sample selection, yields
good estimation precision, admits objective assessment of sampling errors (i.e consistent vari-
ance estimation) and allows sample coordination by (permanent) random numbers. It is there-
fore of interest to revisit the optimal strategy problem, by studying the performance of strate-
gies of type [Pareto ntps, GREG]. This is the chief task in the paper.

General regression estimation belongs to the realm "inference under a superpopulation model".
In that context we follow Sirndal et al. (1992) and confine to mode! assisted (in contrast to
model dependent) inference, thereby having a "safety - net" if the model is misjudged. In par-
ticular, for an estimator to be regarded as admissible it should be design unbiased (at least
have negligible bias). The chief role of the superpopulation model is to (hopefully) guide to
estimators with good precision.

The paper is organized as follows. To make it fairly self - contained, the next three sections
give brief reviews of certain basic concepts and results ; Sections 2 as regards optimal strate-
gies, based on Cassel et al. (1976). Sections 3 as regards GREG estimation, based on Sérndal et
al. (1992). Sections 4 as regards Pareto 7mps, based on Rosén (1997). Strategies of type [Pareto
7ps , GREG] are introduced and studied in Sections S and 6. In particular, Section 6 describes a
numerical study relating to the optimal strategy problem, with findings presented in the
Appendix.

2 On inference from sample surveys

The frame - work for the subsequent inference considerations is as follows. We consider list
sampling, i.e. sampling frame and population one - to - one correspond. Probability sampling
without replacement (wor for short) and with fixed sample size n, is employed. Ideal data col-
lection conditions prevail, full response and no frame and/or measurement problems.

As stated above, notions and results in this Section 2 stem from Cassel et al. (1976).



2.1 Stochastic models for sample data

2.1.1 Sample design
U= (1,2,...,N) denotes the finite population The distribution of the sample inclusion indica-

tors 1= (1, 1,,..., Iy) is referred to as the (sample) design, and is denoted by P. Expectation and
variance with respect to P are denoted by E and V, and inclusion probabilities by 1= E[I;]
and m; = E[I-I;]. Since fixed sample size is presumed, the following relations holds;

Tttty =1 Lt A =0, (2.1)
For s = (5,85, -.., Sx)> Sk > 0, a probability proportional to sizes s design, is specified by (2.2)
below. It requires that the sizes s are known at least up to a proportionality factor. Such a
design is referred to as a ;ps(s) design.

Tty is proportional to sy, i.e. T, =n-s, /z:):sj , k=1,2,...,N. 2.2)
In the following is presumed that (2.2) leads to fulfillment of <1, £=1,2,...,N. (If not, some
adjusting step has to be taken, e.g. introduction of a "take for certain" stratum.)

2.1.2 Superpopulations
The values of the study variable y = (y,, y,, ..., Yx) are seen as random. Their distribution, the
superpopulation, is denoted by 2. Expectation, variance and covariance with respect to 2 are

denoted by £, and €. In the sequel we confine to the simple superpopulation model below,

where pu=(U,, Wy,... , W) and 6 = (G, 05, ... , Gy) are constants while € = (g, &,, ..., &) are ran-

dom variables. The ¢ -values are referred to as (superpopulation) spread parameters.
Ww=kte, £=1,2,...,N, 2.3)
Ele] =0, ?[ex]=0; and Elex,§1=0, k=j, k,j=1,2,...,N. 2.4)

2.1.3 Total survey randomness

Sample selection randomness and superpopulation randomness are assumed to be independent
of each other, i. e. the distribution of (y,I)=(y,, Y555 ¥n» Ii> 155 -, Iy) is the product measure
P = PxP. Expectation and variance with respect to P are denoted by E and V.

As a special case of the well-known formula V(Z)=E [V¥Z))] + V[E®*(Z)], where & stands for
some information ¢ -algebra, we have the following relation which will be useful later on;

V(2)=E[V(Z|y)] + 7[EZ| Y] =E[7(Z| D] + V[EZ|D]. 2.5)

2.2 Estimation

We confine to the "basic” estimation problem, estimation of a population total t(y)=y,+y,+
...Tyy. An estimator 2(y) is a function of I and the y - values for sampled units. It is P-unbi-

ased if E[ 2(y) ] = t(y) holds for all conceivable y. It is linear if it is of the form;
TW=Wo+ Dy We= W+ Dy WL, (2.6)
ke Sample ke U

where Wy may depend on the sample outcome, i.e. W= wi(I), £=0,1,2,...,N. The class of
linear P - unbiased estimators is denoted by £,(P). It is readily checked that %(y) in (2.6)

belongs to .4,(P) if, and only if ;

E(Wo)=0, and E(Wi-I)=1, £ =1,2,....N. 2.7
Generalized difference estimators, denoted 1(y;e),,, constitute a subclass of £Z,(P). They are
defined in (2.8) below, where e = (e, , ¢, ,..., ey) stand for arbitrary, known constants.

Uy;e)p =1e) + D (¥~ e )/m, . (2.8)

k € Sample



For e=0, 1(y;e),, is the Horvitz- Thompson (HT) estimator;

W = Y, Y/ T 2.9)
k € Sample
From (2.8) and (2.9) is seen that (y;e), also can be written;
WY;e)p = WYy +[0(e) —H(€)yr ] (2.10)

2.3 Sampling-estimation strategies

2.3.1 Some generalities
A sampling - estimation strategy is a pair [P,1(y) ] of a sample design and an estimator.

A strategy [P, (y) ] is admissible if 2(y) belongs to £,(P). (2.11)

Search for good strategies is confined to admissible ones. Following Cassel et al. (1976) we
consider the following performance criterion.

The smaller £(V[1(y) ]) is, the better the strategy is. (2.12)

2.3.2 Optimal strategies
Theorem 2.1 below is a slight modification of a result in Cassel et al. (1976), see also Th. 4.1
in Cassel et al. (1977). For completeness we give a proof (due to Cassel et al.) afterwards.

THEOREM 2.1: Assumptions and notation are as hitherto in Section 2. In particular, p
and © are as in Section 2.1.2. The minimal possible value of £(V[1(y)]) over the class
of admissible strategies [P, 2(y) ] with fixed sample size is attained if, and only if, the
strategy which satisfies conditions (i) and (ii) below;

(i) P isamps(o)scheme, i.e. wi is proportional to ok, £=1,2,...,N. (2.13)
(D) 2(y)=4y;p.0)p =)+ ( Y,0,) - D, (¥ - W)/ (0-0,). (2.14)

keU ke Sample
A strategy which satisfies (i) and (ii) is called an optimal strategy.

By (2.10), the estimator in (2.14) can, under (2.13), be written;
AY;0,0)p =) yr + () — (W ur ]- (2.15)

Proof of Theorem 2.1 : In the following is presumed that the strategy is admissible, i.e.
2(y) has form (2.6) with (2.7) in force . Application of the identity (2.5) with Z = 3(y) yields;

EV(A(y) In] =E((y) I D] + VIE(A(y) | D] - 7[E(2(y) | ¥)]. (2.16)
To exploit (2.16) we start with the following observations.
When (y) is P-unbiased, E((y) |y) = t(y) which yields 2[E(%(y) [y)]=2vo;. (2.17)
E[2(2(0) D] = E[o(W, + Y, v, W, L, D] =E (X0} - W 1,). (2.18)
In the right hand sum in (2.18) we first apply Schwarz' inequality (I a’) = (X ax - bi)*/ (I bi?)
with ax = Ok- Wk-\/Ik and by= \/Ik, then the fixed sample size assumption Y I = n, next Jensen's
inequality E(Z?) = [E(Z)]%, and finally (2.7), which yields ;
B¢ty D12 E[(T o, - W, 1) /3 L]12 (3o, -EW, - L1) /n=(36,) /n.
(2.19)
(2.16), (2.17), (2.19) and non - negativity of the variance V[E(2(y) | I)] is yield the following
For any admissible strategy with fixed sample size holds;

EVAWINIZ(Y 6, )/m - Y ok. (2.20)



The lower bound in (2.20) is attained for a strategy that satisfies (2.13) and (2.14). To reali.ze
this, use (2.16) in combination with (2.17) and the following relations, which are readily

checked, E[7(t(y ;p,0), D] = (ZIN 6, ) /n and V[E(1(Y ;1,6),, |T)] = 0. Hence;
E[V(1(y ;p,06), | y)]= right hand side in (2.20).

Thereby the if - part of the theorem is shown. The "only if" part is realized as follows. For a
strategy with fixed sample size to attain the minimal value in (2.20) at least the following con-
ditions must be satisfied. (i) There is equality in Schwartz' inequality with P - probability 1.
This occurs if and only if k- W - VI is proportional to VI, with P- probability 1, which occurs
if and only if Wy is proportional to 1/6. (i) V[E(2(y) | I)] = 0, which requires £(1(y) | I) to
be non - random. Upon some thought is realized that this can only occur under (2.13) and
(2.14). This concludes the proof of the theorem.

2.21)

2.3.3 Situations with auxiliary information

Here is presumed that values of R auxiliary variables are available for each unit in the frame,
denoted by X, =(X,{, X5, ---» X;n)s ¥ =1,2,...,R,. The study y variable and the auxiliary variables
are assumed to be related according to the linear model (2.22) below, with (2.4) in force;

R
Ve =2,B: Xy +&, k=1,2,..,N. (2.22)

r=1

In matrix/vector notation (2.20) can be written y=zl:=1 B, -x,, and even more compactly

with X for matrix multiplication and ' for matrix transposition;

y=pxX+g, with X=(x/,%,..,%x') and B=B,By,...,Br)- (2.23)
Model (2.20) is a special case of (2.3), with px= X Br- X . Hence, Theorem 2.1 and (2.15)
yield that conditions (2.22) and (2.23) below are necessary and sufficient for a strategy to be
optimal under (2.20) + (2.4).

P is a mps(o) scheme, (2.24)

1) =W arear =MW + 2, Be [02) = 2E )i - (225)

In (2.23) subscript GREG] is used to indicate that the estimator is a first step towards the gen-
eralized regression estimator, which will be denoted 2(y) greg -

3 Generalized regression estimation

Here a brief review of generalized regression estimation (GREG) is given, based on Sirndal et
al. (1992). First a notation convention which is used throughout the paper. Algebra operations,
® (=+, -, -, /, etc.), on variables (scalar, vector or matrix valued) stand for component - wise

operations. Fory = (y,¥,,....,yn) and 2=(2,, z,, ..., Zy), YRZ = (y1®z;, Y27, ..., YN®2Zx).

3.1 Some basics
Even if Cassel et al. (1976) derive the estimator 2(Y) gggg; in (2.25) in tandem with a 7ps de-

sign , this estimator is well - defined for any design. In fact it is P - unbiased for any design P
and any values = (B1, B2, ..., Br), be they the values in the model (2.22) or some other. The
precision of the estimator 2(y) grgs,, though, depends on the employed B, the better it comp-

lies with the model B, the better estimation precision.

However, in practice B is normally unknown. The GREG approach to circumvent this is to
estimate B from the sample data. Then, in the first round one presumes that for a// population



units (y, X) as well as the spread ¢ are known. General regression analysis results then tell the
following. (Recall that 1 stands for population total).

The BLUE estimate of  under (2.21)+(2.4)is B = (B,,B,,..,B;)=T'x t, 3.1)
where

T=1(X'xX)/6*)= Y (X; xX,)/o}, t=1(y-X/6*)=) y X,/c;. (3.2)
keU keU
To take a second step towards 2(Y) greg > €Xchange B, in (2.25) for B, in (3.1) + (3.2);
R
UY)areaz = WF)ar + 2, By [UX,) =X, i ] (3.3)

r=1
The estimator (3.3) is not practicable, though, since the B; are unknown population quantities.
This dilemma is circumvented in the "usual" way, by exchanging B for a sample estimate B of
it. Hereby HT - estimators are used to estimate population totals. With (3.1), (3.2) and (3.3) as
background this leads to;

B=(8,8,,..8,)=T"xt, (3.4)
where
T=1X,xX,/6");r = Y X xX,/(0; - T,), (3.3)
k € Sample
=1ty -x/6’)y = Yy X, /(0F- ). (3.6)
: k € Sample
Insertion into (3.3) now yields the generalized regression estimator, the GREG-estimator
R
Waoree =t W)ur + 2B, [1(X,) ~ X, ) ] (3.7
=1

For the sake of simplicity, in the sequel we confine to the case with one - dimensional auxil-
iary data x. Then (2.21), and (3.4) - (3.7) takes the following forms;

Yk — B-Xk+ &, k=1,2,...,N, (3.8)

B=1(yxx/6’)/t(x/6’) = D (v, xk)/oﬁ/ Y xi/oy, (3.9)

B(6) =t (y xx/6%) ;1 11(x*/67)yr = Y (Y, X )/ (Op- 1) [ 2. x5/ (0F -x, ). (3.10)
ke Sample keSample

(V) ores = T(Y)ur +B(6) - [7(X) = (X1 1. (3.11)

At this junction we point at the fact that a superpopulation model plays two roles, firstly it
describes the study variable variation over the population, and secondly it is an instrument for
choosing the sampling - estimation strategy. As always in model contexts there is a dichotomy
between true and believed model. The former describes how "nature" generated the study vari-
able values, while the latter specifies how the statistician believes they were generated. For
true as well as believed model, the /inear model (2.21) is a possible option, but any type of
model can in principle be used.

The distinction between true and believed model concerns in particular the spread parameter
o. So far o has been viewed as known, at least up to a proportionality factor. Via (3.10) o also
plays a role in the estimation process. It may also affect the choice of sample design.The stat-
istician must use some value for 6, whether he/she knows it or not, a believed ("guestimated"
is another possible term) value. The true o is of course preferred, but "truth” and "belief" may
deviate. To cope with this possibility, we introduce the following terminology and assumption.



For believed models, also called sampling - estimation models, we confine to
(3.8) + (2.4) with the spread parameter changed to § = (,,9,,..., 0y)- (3.12)

Formula (3.13) states how (3.10) is modified to comply with (3.12).
B@)=t(yxx/8)p /2(x*/0%)yr = Z(yk- x, )/ (8} -nk)/in/(Si ). (3.13)
ke Sample k € Sample

In this context we do not bother about the other model parameter, B, though, since it enters
neither in the estimation process nor in the sample design.

3.2 Estimator variance and variance estimation

The GREG estimator is a non - linear function of sampled y - values, which makes the issues
"estimator variance" and "variance estimation" a bit complex. One has to rely on approxima-
tions. Section 6.6 in Sirndal et al. (1992) provides the full story, from which some excerpts are
given below. As stated, we confine to the case with one-dimensional auxiliary data.

Regarding B as an error free estimate of B leads to the approximation;

TV oree = B UX) + 1Y)y —B-tX) gy =B 1(X) + U(E)jyr (3.14)
with
E=(E.E,,....,Ey), Ex= w-B-xk, £=1,2,...,N, (3.15)
Relation (3.14) leads to the following approximate variance formula;
VItWewal= VI Y E/m ]. (3.16)
k € Sample

We presume that a procedure V for estimation of the variance of a sample sum is available for

the used sample design. Application of V to the sum to the right in (3.16) would yield a vari-
ance estimator V[2(Y)gge 1> but there is an obstacle. The Ey are not known even for sampled
units, since they depend on B, which in turn depends on all y - values in the population. To cir-
cumvent this obstacle, the following proxies ey for the Ey are introduced;

e, =y, —B-x,, keSample. (3.17)
Next, by exchanging Ey in (3.16) for ey and treating the ey as constants (although they depend
on the sample), the following variance estimator is obtained;

VIt ares i =V D€, /m, ], with e treated as being non-random. (3.18)
k € Sample
A refinement of (3.18) is achieved by the so called g - method. The point of departure is then
the following version of () gze > S€€ €.2. (6.5.18) in Sdrndal et al. (1992);

Wores =B %) + 3 Be e gk=1+xg2FT’§Z‘i;;£’;)m]. (3.19)

T
ke Sample k
By (3.19) the following holds : V[1(¥) grec ] = V[Zke SamplcEk-gk/rck]. The last term is then

estimated as follows. Use e as a proxy for Ey, and treat ex as well as gy as non - random
(although they depend on the sample), leading to the following alternative variance estimator;

Vit e, =V [ Z e, -8, /m, ], with ek and g treated as non-random. (3.20)

k & Sample



4 On mtps sampling
4.1 Extension of the nps notion
We start by slightly modifying the notion of nps as formulated in Section 2.1.1. Firstly, the

quantities to the right in (2.2) are re-named. For a size measure s =(s,, s,, ..., §\) and a sample
size n, the A=(A,, A,.., Ay) in (4.1) below are called the desired inclusion probabilities ;

Mo=n-s, /X0 s, k=1,2,.,N. @4.1)

As before is presumed that A <1, k=1,2,...,N. (If not, some appropriate adjustment should be
made.) Secondly, the notion of ntps is made a bit wider than before. Definition (2.2) requires
that a ntps design satisfies 7, = A, . From now on we accept a sampling scheme as a nps design
if, with 1= (%, 7, ,...,my) for the factual inclusion probabilities;

m, = Ay holds with good approximation for k=1,2,...,N. 4.2)
For a "perfect" mps scheme (i.e. a scheme with m, = A, ) the HT - estimator is;
MWe = 2, Vi/ M - (4.3)
ke Sample

In particular, for a perfect nps scheme the estimator in (4.3) unbiased. Under (4.2) it is only an
"approximate HT - estimator", which may have some bias. However, with no further auxiliary
information available (4.3) is the "natural” estimator under a wps design (in (4.2) sense).

4.2 Pareto nps
Pareto 7tps as defined below was introduced in Rosén (1997).
DEFINITION 4.1: A Pareto nps sample with size measure s and sample size n is selec-
ted as follows. First compute desired inclusion probabilities A, A, , ..., Ay by (4.1), as
usual presuming that A, <1, £=1,2,...,N. Then realize independent random variables
Uy, Us, ..., Uy with uniform distribution on [0,1], and compute;
_ Uk' (1 - kk)
* 7\'k' (l - Uk) ’

The sample consists of the units with the n smallest Q- values.

k=1,2,..,N. (4.4)

In spite of its name, it is not obvious that Pareto 7tps is a mtps design in the (4.2) sense. How-
ever, this is shown in Rosén (2000) and Aires & Rosén (2000), where also is shown that in
almost all practical situations 1(y) ., has negligible bias under Pareto nps.

The results in (4.5) and (4.6) below are justified in Rosén (1997).
Asymptotically correct approximation of the estimator variance is given by;.
2
Yy N N
VIAY) s 1 = i?r? 2 (x: —2).21 y;-(1- xj)/zj=l A= xj)J A 1-X). (@5)
Consistent estimation of V[1(y),,] is given by;

1-2,
<7['c(y),c,,s]—~—1 > (XL— > & (x % >~ 7»)] (1-Xy)- (4.6)

k € Sample A'k j€ Sample j j & Sample

Remark 4.1 : Computation of (4.5) and (4.6) is facilitated by (4.7) and (4.8) below, where W,
R and S are as stated in (4.9) and (4.10);

Right hand side in (4.5) = (W-R?/S) - N/(N - 1), @.7)
Right hand side in (4.6) = (W-R?/S) -n/(n- 1), (4.8)



Zy"(l 7“), R= Zyk (1-%), S= Zx (1-A), (4.9)

Ay =
i (1= 1)
w= ¥ (Xk—).(l-xk),R= 3 Tt md 8= -4y, (4.10)
ke Sample 7"k ke Sample }"k ke Sample

5 Regression estimation under nps

5.1 A slightly modified GREG estimator

Here we consider situations where the study variable y is observed for a size n mps(s) sample
(in (4.2) sense) and an auxiliary variable x is available. For simplicity X is presumed one -
dimensional. The task is to estimate the population total t(y).

For a (wide sense) mps design the GREG estimator can often not be derived precisely as stated
in Section 3, since one does not know the exact inclusion probabilities 7y, which are needed
for HT - estimation. However, the "quasi HT - estimator" (4.3) is available. The definition of
GREG - estimator is therefore modified by letting %(-) ., play the role of 2(-); . The modified

GREG estimator is as follows;

(Y5 8)Grec = W) s + B®) g [T(X) = 1) ], (.1
where
B@) e = 2Y - X/8%) g /U /87) gy = D (yi- XM} M)/ 2 xE/(BF-A).  (5.2)
ke Sample ke Sample

5.2 GREG estimation under Pareto nps design

5.2.1 General results

The estimator given by (5.1) + (5.2) works for any mps(s) design, in particular for Pareto mnps.
Formulas for estimator variance and variance estimation, though, differ for mps schemes. For
Pareto mtps, combination of (3.16) and (4.5) yields the following approximate variance formula
for the GREG estimator, with Ey according to (3.15);

V[t(y)GREG] N Z(E‘z E (1 7»)/2 j'(l_xj)]'xk'(l'xk)° (5-3)

N-1:33 Ay
Combination of (3.18) and (4.6) yields the following variance estimator, with ey as in (3.17) ;
2
n € €; (1
WGech =— - X |35 - X e 7)), 2A-1)[-1-2). (59
n-1 k € Sample k  jeSample j je Sample

For the g-method the definition of the g- coefficients are modified as follows;
Xy [T(X) - t(X) ps ]
g =1+ 2 2,82
O Ux"/8%)
Combination of (3.20) and (4.6) yields the alternative variance estimator;

MW Gcl = 3 [9—“'—%‘—— 3 3—‘%’7(1-——/ 3 a- x)] 1-%).  (5.6)

7" k je Sample J je Sample

, k=1,2,..,N. (5.5)

k € Sample

Note that (5.4) and (5.6) can be computed by employing Remark 4.1, after using the transfor-
mations yx — € respectively yx — ex- gk.



5.2.2 GREG when the auxiliary variable is used as size measure

Assume that model (3.8) is in force and that B is positive, which is the typical case in practice.
Then y and x are positively correlated, often even fairly proportional to each other. The "tradi-
tional" mps approach in this type of situation is to use x as size measure, i.e. to use a mps(x)
design, accompanied by %(x) ., in (4.3). A natural question is therefore: Given that the sample

is selected with mtps(x), can GREG estimation lead to improvements over %(x),,, ? The answer
1S no, as is seen from the following result.
Under a mps(x) design the following holds for any & 2 0: %(y; 8) Gres = 1Y) s - 5.7

To realize (5.7), note that for any mtps(x) design holds %(x),,, = T(x). Having this, the claim in

(5.7) follows readily from (5.1). With (5.7) as background, the following results about vari-
ances should "reasonably" hold for Pareto nps(x), and they do hold.

Under Pareto mtps(x): V[2(y) Greo] in (5.3) = V[E(Y) ,,] in (4.5), (5.8)
Under Pareto 7ps(x): The two versions of V[2(y) 3] in (5.4) and (5.6) agree, and
they are both equal to V[(y),,] in (4.7). (5.9)

It is quite straightforward to checks that (5.8) and (5.9) hold not only "reasonably" but also
algebraically, and the details are left to the reader. When checking (5.9) note that for s = x the
g-coefficients are gx =1, k=1, 2,...,N, which implies that (5.4) and (5.6) coincide.

6 The optimal strategy problem revisited

6.1 Introduction

In this section we pursue the optimal strategy issue. As in Section 2, the framework is confined
to estimation of a population total T(y) from observations of y on a wor probability sample
with fixed sample size, when auxiliary information x, for simplicity one - dimensional, is avai-
lable for each population unit.

Theorem 2.1 provides background for belief that strategies of type [mps(0), T(Y) creg ] are close
to optimal under the model (3.8) + (2.4). Moreover, since we regard Pareto mtps as a particu-
larly attractive mps design, the strategy [Pareto ps(6), 2(Y) greg | Will be of special interest,
leading to the conjecture in (6.1) below. There, and throughout the paper, is presumed that
compared strategies have the same sample size, and also that estimators have negligible bias.
Hence, strategy is measured by estimator variance.

Is the following conjecture true ? Under (3.8) + (2.4), the performance of the strategy
[Pareto Ttps(G), (Y ; 6) arec | 1S superior, at least never notably inferior, to that of any

other admissible strategy. (6.1)

An aspect of (6.1) concerns quantification of the no - answer for the strategies considered in
Section 5.2.2, to use the auxiliary x as size measure in a 7tps design accompanied by estimation
according to (4.3). This leads to the following question.

How much inferior to [Pareto nps(6),t(¥)grec ] is [Pareto mps(x), (y) s ] ? 6.2)

Model based and model assisted procedures of course suffer in some respect if the model is
misjudged. In a model based approach this commonly leads to point estimation bias. In a
model assisted approach, as GREG, misjudgment does not lead to bias but affects estimation
precision adversely. It is of interest to obtain quantitative information about the precision loss
by model misspecification. We shall considerer two types of misspecification. In the simplest
one is assumed that true and believed superpopulation models both are linear, while the true
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spread ¢ is misjudged to be §. Striving to be close to optimal it is natural to employ the strat-

egy [Pareto 7ps(8) , (Y ;) oxe ] in which § affects the sample design as well as the estimator.

This raises the following question.

If (3.8) + (2.4) is the true model, but (3.12) is used as sampling- estimation model,

how inferior to [Pareto ps(0), (Y ; 6) Tnsg ] is [Pareto 7wps(8), (¥ ;0) drec 1? (6.3)
A more complex misspecification possibility is that the true model is nonlinear, while the lin-
ear model (3.12) is used as sampling - estimation model, with correct or misjudged G.

How does [Pareto ntps(3), (¥ ; 8) cre ] perform when the true model is non-linear? (6.4)

6.2 Performance measures for strategies
To study the questions (6.1) - (6.4) , some performance measure for strategies must be used.
Although optimality in Theorem 2.1 relates to the criterion £ (V[1(y)]), its design analogue

V[t(y)] will be employed, in spite of its drawback to depend on the specific study variable y.

It is used for the following main reasons. (i) When true and believed superpopulation models
differ, V[t(y)] is the more natural measure. (ii) When the models agree and the sample size is

not "too small", £ (V[t(y)]) and V[t(y)] lie close to each other. In particular, the notion
"close to optimal" is fairly much the same for the two criteria. The measure V[1(y)] is not

used as it stands, though, but in transformed versions. The quantities RME and RVI specified
below are preferred since they, although being essentially equivalent to V[t(y)], have more

concrete interpretations.
The relative margin of error (in %), abbreviated RME, for the strategy [P, %(y) ] is;

RME =100-1.96 - \/V[1(y)] under design P / ©(y) %. (6.5)

Conjecture (6.1) provides background for name and choice of denominator in the next notion.

The relative variance increase (in %), abbreviated RVI, for strategy [P, ¥(y) ] is;

VI = ( V[1(y)] under the design P _1 J 100 %. (6.6)

ps

V[1(y)] for the strategy [Pareto 7tps(6), (Y ; 6) orec

RME and RVI are not independent measures, though. The following holds. RVI [P, 1(y)] =
[(RME[P, %(y) /RME[Pareto mps(0) ,2(¥;8) =z 1)°- 11+ 100 % . However, we think it facilitates
for the reader if both RME and RVI are presented

One would like to be able to carry out strategy comparisons relating to questions (6.1)-(6.4) by
employing nice analytical formulas for RME and RVIL. To the best of our understanding ,
though, it is in vain to hope for such formulas. The feasible approach is to carry out a numeri-
cal study for a selection of strategies and test situations, and this approach was used.

The simplest would have been to take for granted that (4.5) and (5.3) work with "good
enough" accuracy, and to use them to derive RME and RVI This would have required fairly
modest numerical efforts. However, GREG as well as Pareto mtps are large sample procedures,
and it is not obvious how accurately their formulas work for finite samples. To gain informa-
tion also on that question, a more elaborate numerical approach was used. Numerical results
were derived in a Monte Carlo study, with repeated independent samples .
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6.3 Approximation accuracy
The considered accuracy questions are listed below.

Point estimator bias
Sérndal et al (1992) show that 1(y)sres 1S consistent under general conditions. Rosén (2000)

and Aires & Rosén (2000) show that 1(y),,, under general conditions has negligible bias for

Pareto mps. Of special interest was to see if the same holds for the combined estimator
(Y ;8) oreg - The performance measure is relative bias for point estimator (RBPE) ;

Variance estimator bias

The variance estimators (3.18), (3.20) and (4.6) are based on large - sample considerations.
Even if not unbiased they are consistent under general conditions. Another task of special
interest was to find out to what extent this holds for the combined variance estimators (5.4)
and (5.6).The performance measure is relative bias for variance estimator (RBVE);

RBVE = (E(V[t(y)])/ V[*(y)] -1)-100%. (6.8)

Accuracy in approximate formulas for the theoretical estimator variance

The chief interest in this context relates to the large-sample formula (5.3). When evaluating its
accuracy we use standard deviation, abbreviated D, as basic quantity (instead of variance) .
The performance measure is relative error for theoretical standard deviation (RESTD);

RETSD = (D[%(y)],,,./D[t(y)]-1)-100%, D[%],,,, =/ V[tlep > D[t]1=+V[1]. (6.9)

The performance measures (6.5)-(6.9) involve the theoretical quantities ©(y), E[t(y)], V[1(y)]

and E(V[%(y)]). Even though all population values are known, only t(y) can be computed
exactly, in lack of manageable expressions for the others. Numerical values for them were
derived as means based on 3000 independent samples, see (6.10). Since as many as 3 000 runs

were made, the means are regarded as true values, even if "empirical" is a more adequate term.
3000

Z(w(y)u-t(y)) ROV ST WL ON
(6.10)

E[t(y)] = —— 2 (y)., VIUY)]=

3000 3000-1

6.4 The numerical study
6.4.1 Test situations
A test situation is specified by values for a study variable y and an auxiliary variable x for
each unit in a population. The following general framework was used, judged to embrace a
versatile family of test situations with parsimonious parameterization.

The values of the auxiliary variable x were set to;

xx=k, £k=1,2,...,N. (6.11)
The study variable values y were derived by first specifying values for (non - negative)

parameters o., B, ¢ and v, and then generate y-values by relation (6.12) below, where
Z1,Z,,...,Zx stand for independent standard normal random variables;

y=B-x;+c-x{-Z,, k=1,2,...N. (6.12)

In the notation used in Section 2.1.2 this means;
Elal =0, 7[a] =0} =c*x}', ¢@le,al=0, k=l k,1=1,2,..,N. (6.13)

In conjunction with model (6.12) we use the following terminology from Rosén (1997). The
plot {xx,B-x7), k= 1,2,...,N} is called the y - X - trend. Its shape is determined by the
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parameter o, it is linear when o lies close to 1, convex when o. > 1 and concave when 0. < 1.
The parameters ¢ and y determine how much the y - values spread/scatter around the trend, y
is called spread shape and c spread magnitude.

There is an abundance of potentially interesting test situations, but many reasons call for tem-
perance, not least the space required for presentation of numerical findings. The study was
confined to six types of test situations, labeled A - F, which are specified in Table 6.1. We
believe, or at least hope, that these situations allow for fairly general conclusions. Two
parameters were held fixed, the population size N and the regression coefficient f3 ;

Only population size N = 200 was considered, [3 was set to 1. (6.14)

The reason for setting B = 1 is that the performance measures depend on the parameters 3 and
c only through their ratio B/c. Hence one of B and ¢ can be normalized.

Table 6.1 Parameter values in (6.12) and (6.13) for the
considered test situations
c-values
Label a Y | Resulting o €1 C2 3
A 1 0.5 | opeca/X, 0.9 1.8 3.5
B 1 1 Oy o< Xy 006 012  0.25
C 1 025 | o,e4/x, 3 7 13
D 1.2 0.5 N & 2.5 5 10
E 1.5 0.5 Opoc /Xy 12 25 50
F 07 | 05 Oyo< A[ X, 0.2 0.4 0.7

Below we give some comments on the parameter choices.

(i) The superpopulation model is linear in situations A, B and C, while non-linear in D, E and
F, "mildly" convex in D (.= 1.2), "strongly" convex in E (ot = 1.5), concave in F (ot =0.7).
(ii) The y-scatter was (hopefully) held at practically realistic levels by the following consider-
ations. For the unit with the largest x - value, i.e. unit N = 200, yy should not deviate from its
trend value (= xy, when =1) by more than (roughly) half the trend value. With 2 as a practi-
cal upper bound for |Z|, the following restriction was laid on c;

(6.15)

For each combination of o and y three spread magnitudes ¢ were used. The largest, denoted c;,
was given by the right hand side in (6.15) for x99 = 200. The other two, ¢, and c¢;, were set to
(roughly) c;=c3/2 and ¢; = ¢, /2.

(iii) The normal variates Z,, Z,, ... , Zy were generated by the SAS - function NORMAL with
seed = 555. This seed value was used to achieve comparability with findings in Rosén (1997).

c-X;-2 < xy/2, which implies c<x$7/4.

6.4.2 Sampling-estimation model

Sampling - estimation models (or "believed" model) were chosen in agreement with (3.12), i.e.
(3.8) +(2.4) with spread parameter 8. Correct spread guestimate is said to be at hand if § = o,
overgestimated spread if 8 > ¢ and undergestimated spread if §< .
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6.4.3 Sample designs and estimation procedures

Sample designs were confined to Pareto mps. Note that for s = 1 Pareto ntps is simple random
sampling. Two estimation modes were considered, "straight" nps estimation by (4.3) (which is
HT - estimation for simple random sampling), and GREG estimation by (5.1) and (5.2). The
following shorthand for designs and estimation procedures is used.

PAR(p) stands for the Pareto tps(x’) scheme, (6.16)
SRS stands for simple random sampling [ = PAR(0)], (6.17)
mtps stands for the estimator (y),,, in (4.3), HT for Horvitz-Thompson estimation, (6.18)
GREG(p) stands for the estimator 2(y;x’ ) according to (5.1) and (5.2). (6.19)

6.4.4 Sample sizes

When sample sizes were decided on, attention was paid to sampling rate as well as sample
size per se, against the following background. Performance for mps procedures commonly
depends quite pronouncedly on the sampling rate, which therefore was wanted to range from
"small" to "large". Approximation accuracy usually har sample size as the most vital aspect .
The following sample sizes were used in the study, n = 10, 25, 50 and 80. Since population
size was set to 200 [see (6.14)], sampling rates range from 5% to 40%.

6.4.5 Considered strategies

Here we adhere to the notation in (6.12). In particular, spread, which so far has been referred
to by 6, will in the sequel mostly be specified by the 7y in (6.12), 6 and 'y corresponding by the
relation 6 = (¢-x): k= 1,2,...,N), ie. spread is proportional to x". In combination with

(6.16) - (6.19) the strategy in interest focus, [Pareto ©tps(0), (Y ;6) oreg | » is denoted ;
[PAR(Y),GREG(Y)]. (6.20)

Conjecture (6.1) says that (6.20) is the optimal strategy under (6.12) + (6.13), at least close to
being so. When appraising the conjecture, any other admissible strategy with fixed sample size
is a "challenger". The conjecture cannot be proved by a numerical study, though, which can
encompass only a finite number of strategies and test situations, while it could be disproved.
The latter would happen if other admissible strategies exhibit negative RVI [see (6.6)] of non-
negligible magnitude. However, the conjecture is supported if no considered strategy has (sub-
stantially) negative RVI-values, the more supported the more diverse the family of alternative
strategies is.

One way of classifying strategies is by mode for exploiting auxiliary information. In the pre-
sent context two kinds of auxiliary information is at hand, the "y - prognostic" variable x and
the "uncertainty measure" 0. Both may enter into a strategy in either of the following ways.
The information is (i) used in the sample design as well as in the estimator, (ii) used only in
the estimator, (iii) used only in the sample design or (iv) not used at all.

The standard example of a strategy without use of auxiliary information is simple random
sampling followed by straightforward estimation, [ SRS, HT]. This strategy was included, not
as a challenger to (6.20) though, mainly as a benchmark strategy. However, also the "naive"
SRS may be accompanied by sophisticated estimation, e.g. the strategy [SRS, GREG(Y)]. Then x
as well as o (or y) enter in the estimation step, but not in the sample design.

A "traditional" mps strategy, as for instance [ PAR(1),nps ] employs only x, as size measure in a
nps(x) design, but neither x nor ¢ is used in the estimation step. A nearby thought is therefore
that this strategy might be improved by use of auxiliary information in the estimation step, e.g.
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by employing [ PAR(1), GREG(y)]. However, as discussed in Section 5.2.2, improvement along
this line is a chimera. In the present notation, (5.7) says the following;

[PAR(1),GREG(Y)] = [PAR(1),nps] forany?y > 0. (6.21)

Another possibility for employing just one of x and 6/ is given by [PAR(Y),nps]. This strat-
egy borrows sample design from the presumed optimal strategy (6.20), but not estimator.

So far we have tacitly presumed "ideal" modeling conditions, with believed and true models
equal, and the latter being linear. In practice model misspecifications occur, though. It is there-
fore of interest to try to find out how robust to model misspecification strategies are. This is
the issue in questions (6.3) and (6.4), which both relate to cases with linear sampling - estima-
tion model. Question (6.3) concerns misspecification of spread when also the true model is
linear, while (6.4) concerns cases where the true model is non - linear. For misspecification of
spread, we use the following terminology. Given that o x”, spread is mildly respectively
strongly overguestimated for & x!27 respectively & o< x!° 1 Analogously, it is mildly re-
spectively strongly underguestimated for § o< X8 T respectively § o< x™°7.

For the strategy in focus of interest, [ PAR, GREG ], the believed spread & affects design as well

as estimator. To investigate robustness against model misspecification the following strategies
were considered; {[PAR(x)), GREG(¥)]: k=7-1.2,7-1.5,7-0.8,7-0.5}.

The strategies mentioned in the above discussion are listed in Table 6.2 below. Note that all of
them are admissible and have fixed sample size.

Table 6.2. Studied strategies. True spread ¢ is proportional to x".
Use of information about spread
In both steps I.n the estima- In the sampling step Not at all
tion step only only
In both [PAR(1), GREG()]
steps
Correct spread guestimate Correct spread
Intheesti-|  [PAR(),GREG()]  |guestimate
mation Overguestimated spread [SRS,GREG(Y)]
Use of {step only | [PAR(y-1.2)),GREG(Y-1.2)]
infor- [PAR(Y - 1.5), GREG(y - 1.5)]
mation Underguestimated spread
about [ PAR(y-0.8), GREG(Y- 0.8)]
X [PAR(Y-0.5), GREG(Y-0.5)]
Correct spread
In the [ PAR(Y),ps ]
sampling Overguestimated spread
step only [PAR(1), ps] [PAR(y- 1.2)), ®ps]
[PAR(Y- 1.5), mps]
Underguestimated spread
[PAR(Y-0.8)),mps]
[PAR(Y-0.5),mps]
Not at all [SRS,HT]
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6.5 Conclusions from the numerical findings

Results from the numerical study are presented in the Appendix. Below we formulate our con-
clusions so that the reader may agree or disagree when examining the Appendix figures. Com-
parison of strategies is considered first, and approximation issues thereafter.

6.5.1 Comparison of strategies
The discussion is structured by the questions (6.1)-(6.4).

Conclusions relative to question (6.1) : Conjecture (6.1) concems linear superpopulation
model and correctly specified sampling - estimation model. Situations with linear superpopula-
tion are those labeled by A, B ad C in Table 6.1. Corresponding RME and RVI values are pre-
sented in Tables A.1, A.2 and A.3 in the Appendix. As already stated, the conjecture cannot be
proved, only supported or disproved. The crucial quantities are the RVI - values for strategies
other than [ PAR('Y), GREG(Y)]. Non-negative RVI values support the conjecture, while nega-
tive ones cast doubt over it.

The following is seen in Tables A.1, A.2 and A.3. For the considered strategies, sample sizes
and spread alternatives almost all RVI are positive. Most of them solidly positive, but there are
some exceptions. Firstly, in situation B [PAR(1),GREG(y)], [PAR(1),nps] and [ PAR(Y),7ps]
are equally efficient as [ PAR(y), GREG(y)], all having RVI = 0. However, this is understood
by what is stated in (6.21) and the fact thaty =1 in situation B.
Secondly, and more surprising, negative RVI turn up for [PAR(Y - 1.2)), GREG(Y - 1.2)]. This stra-
tegy was included in the study on the "merit" model misspecification, which was expected to pull
in the direction "positive RVI". However, whatever be the explanation for the negative RVI
values, they are so small that our overall conclusion is as stated in (6.22) below. We do not
have a clear understanding of the negative RVI, though. Possible explanations are : (i) Random
disturbances due to the simulation approach. (ii). Perhaps slight over - guestimation of spread
in fact is advantageous.

From survey practical point of view, the findings strongly support the conjecture

that [Pareto mtps(G) , (Y ; 6) creg | iS close to being an optimal strategy. (6.22)

Another observation from Tables A1, A2 and A3 is as follows. The "naive" strategy [ SRS,HT]
is severely outperformed by all strategis which employ auxiliary information in some way.
However, [SRS, GREG(Y)] yields substantial improvement of [ SRS, HT ], sometimes but not
always it works better than [PAR(1),7ps].

Conclusions relative to question (6.2) : Also here the numerical background is given in
Tables A.1, A.2 and A.3. As is seen, in line with conjecture (6.1) [Pareto 7tps(G), (Y ;6) oreg
never performs worse than [Pareto mps(x), 2(¥) ,,, ], and in many situations considerably better.

Its superiority varies, though, from situation to situation. As already discussed, when Y= 1, the
two strategies are equally good, while RVI for [Pareto ntps(x),%(Y),,, ] in some situations is as

high as 50% and even more.

Conclusions relative to question (6.3) : Again the numerical background is provided by
Tables A.1, A.2 and A.3. The findings are summarized as follows.

When true superpopulation model is linear, misspecification of spread shape has quite
small adverse effect on the efficiency of the strategy [Pareto 7tps,t(y) ieec - (6.23)

Conclusions relative to question (6.4) : The issue is behavior of [Pareto ntps(0),1(Y;6)cre

when the superpopulation model is judged to be linear, although it is not. Here Tables A4, A.5
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and A.6 numerical background. It is difficult to draw clear - cut conclusions, and we leave the
figures to the reader's own reflections. A tentative conclusion may be as follows.

If one is in serious doubt about the shape of the trend in the superpopulation model, it
may be wise to use simple random sampling with GREG estimation instead of trying

to be optimal with a strategy of type [Pareto ©tps, 2(Y) orec 1 - (6.24)

6.5.2 On approximation accuracy
We adhere to the disposition in Section 6.3.

On point estimator bias : Numerical background is given in tables A.7-A.12. The clear mes-
sage from the figures is that the point estimators under consideration work with negligible bias
in all types of situations. Perhaps a warning should be issued for [SRS,GREG]. In particular is
seen that the studied strategies live up to being mode! assisted in the sense that point estima-
tors have negligible bias also under model misspecification.

On variance estimator bias : Numerical background is given in tables A.13-A.18. Our overall
conclusion is as follows. Even if the variance estimators are not exactly unbiased, they work in
an acceptable way in all types of situations. A warning for the strategy [SRS , GREG] should
perhaps be given also in this context.

On the basis of general experience from GREG estimation one believes that the V- estimator
in (5.6) should perform better than the V- estimator in (5.4). On an overall basis this is con-
firmed by the numerical findings. The difference between the estimators is not very pro-

nounced, though.

On accuracy in approximate formulas for theoretical estimator variances: From a survey
practical point of view this is not an important issue. The most interesting aspect is perhaps if
we could have dispensed of all the simulations, and based our comparisons of strategies on the
approximate formulas for estimator variances. A look at the figures in Tables A.13 - A.15
shows that the approximate variance formulas sometimes can be misleading.
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Appendix. Numerical results
The numerical findings are collected in Tables A.1-A.18.

Section A.1 contains findings on performances of the different strategies. As regards "abso-
lute" performance, the measure relative margin of error (RME) is most relevant. However,
when comparing strategies it is easier to look at relative variance increase (RVI). Both are

reported.

Tables A.1- A.14 include both the strategies [PAR(1), GREG(Y)] and [PAR(1), ps] although we
know they are equal, see (6.21), for the simple reason that it is easy to forget about their
equivalence.

Section A.2 contains findings on approximation accuracy. Tables A.7- A.12 concern relative
point estimator bias (RBPE) and Tables A.13 - A.18 relative variance estimator bias (RBVE) .
Tables A.13-A.18 also present relative errors for the approximate variance formulas.

In Tables A.13-A.18 equivalent strategies are not duplicated. Only values for [PAR(1),nps] are
listed, not for its equivalents [PAR(1), GREG(y)]/V; and [PAR(1), GREG(Y)]/ V.. The reason for
blank columns under RESTD for spread magnitude c; is that we (in last minute) came to sus-
pect a program bug, which could not be sorted out.
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A.1 Relative margins of error (RME) and relative variance increase (RVI)

Table A.1. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type A [see Table 6.1].
True superpopulation model is linear (0. = 1) and spread is proportional to \/; (y=0.5).

n=10 n=25 n=50 n=80
c c c ¢
Strategy 0.9 1.8 351 09 1.8 35 0.9 1.8 35 0.9 1.8 35
RVIin %
Correct spread guestimate
[PAR(Y), GREG(Y)] 0 0 0 0 0 0 0 0 0 0 0 0
[SRS,GREG(Y)] 168 | 219 | 156154 ) 199 | 133 | 165 | 242 | 27.2 | 18.7 | 32.0 | 20.2
[PAR(1),GREG(Y)] 5.8 2.7 124 ] 103 | 9.1 93 ] 121 7.8 13.0 | 188 | 83 | 11.7
[PAR(1),7ps] 5.8 2.7 124 1 103 | 9.1 9.3 | 12.1 7.8 13,0 ] 188 | 83 | 11.7
[PAR(Y),mps] 944 | 147 | 56.6 | 927 | 157 | 58.0 1105 | 184 | 59.6 J 1159 | 199 | 66.5
[SRS,HT] 4667 § 776 | 293 | 4797 | 889 | 288 | 5350 ] 965 | 327 | 5530 | 976-| 316
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)] | 05 | -1.2 21 ]1-04] -14 1.6 0 -1.6 | 04 ] -1.0 1.2 | -03
[PAR(Y- 1.5),GREG(y- 1.5)] 1.7 0.7 54 | 26 1.6 27 | 43 0.5 20 | 4.1 32 1.1
[PAR(y- 1.2)),mps ] 578 | 83.9 | 357 ] 581 | 93.5 | 37.8 | 680 | 109 | 37.7 | 701 115 | 40.1
[PAR(Y- 1.5),mps ] 208 | 26.7 | 143} 211 | 33.7 | 16.7 | 244 | 357 | 15.6 | 275 | 42.7 | 16.6
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)] 0.3 2.4 18 1.9 1.3 0.9 0.5 1.3 25 | -0.9 32 0.1
[PAR(Y-0.5), GREG(y-0.5)] 4.6 5.9 42 | 25 6.4 1.9 3.7 6.2 7.1 1.3 11.1 | 3.7
[PAR(Y-0.8)),mps ] 1413 | 225 | 857 11405 | 245 | 84.7 } 1633 | 276 | 90.3 [ 1706 | 296 | 94.9
[PAR(y-0.5),mps ] 2352 ] 383 147 ] 2352} 421 137 ] 2696 | 464 | 156 | 2841 | 500 | 157
RME in %

Correct spread guestimate
[PAR(Y), GREG(Y)] 50 {121 120430 69 [128} 19| 45 | 81 | 13 | 31 | 57
[ SRS, GREG(Y)] 54 1134 219} 32 7.6 | 136 } 2.1 5.0 9.1 1.4 3.6 6.3
[PAR(1),GREG(Y)] 5.1 123 | 216 | 3.1 72 (134 ] 2.0 4.7 8.6 1.4 3.2 6.0
[PAR(1),mps] 5.1 123 | 216 ] 3.1 7.2 134 ] 2.0 4.7 8.6 1.4 32 6.0
[PAR(Y),mps] 16.1 | 190 | 255] 9.6 | 11.1 | 161 | 6.6 76 | 102 | 4.7 5.4 7.4
[SRS,HT] 343 | 358 {404 1209 218 | 252 | 141 | 147 | 168 | 9.8 102 | 11.7
Overguestimated spread
[PAR(Y-1.2)),GREG(y-1.2)] | 5.0 | 12.0 | 20,6 | 3.0 69 | 1291 1.9 4.5 8.1 1.3 3.1 5.7
[PAR(Y-1.5),GREG(y- 1.5)] 50 | 121 | 209 ] 3.0 70 | 13.0§ 2.0 4.5 8.2 1.3 32 5.8
[PAR(y- 1.2)),mps] 13.0 | 164 § 23.7 | 7.8 9.6 150 ] 5.3 6.5 9.5 3.7 4.6 6.8
[PAR(Y-1.5),mps ] 87 | 13.6 | 218 ] 53 80 [ 138} 3.6 5.2 8.7 2.5 3.7 6.2
Underguestimated spread
[PAR(Y-0.8), GREG(y-0.8)] 50 ] 122 12061 3.0 70 | 129} 19 45 8.2 1.3 32 5.7
[PAR(Y-0.5),GREG(y-0.5)] 5.1 12.4 | 208 } 3.0 7.1 129 | 1.9 4.6 8.4 13 33 5.8
[PAR(Y-0.8)),7ps ] 1941 21.8 1 278 1 116 | 12.9 | 174 | 8.0 87 | 11.2 | 56 6.2 8.0
[PAR(y-0.5),mps ] 246 ) 266 | 32.0 ) 148 | 158 | 19.7 } 101 | 10.7 | 13.0 | 7.1 7.6 9.2
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Table A.2. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type B [see Table 6.1].
True superpopulation model is linear (o = 1) and spread is proportional to x (y=1).

n=10 n=25 n=50 n=80
Strategy < ¢ c c
006 { 0.12 | 025} 0.06 | 0.12 | 025 | 0.06 | 0.12 | 0.25 | 0.06 | 0.12 | 0.25
RV1in %
Correct spread guestimate
{PAR(Y),GREG(Y)] 0 0 0 0 0 0 0 0 0 0 0
[SRS,GREG(Y)] 38.8 | 46.8 | 32.6 1388 | 446 | 379 | 453 | 60.2 | 64.2 ] 56.7 | 89.6 | 69.4
[PAR(1),GREG(Y)] 0 0 0 0 0 0 0 0 0 0 0
[PAR(1),mps] 0 0 0 0 0 0 0 0 0 0
[PAR(Y),ps ] 0 0 0 0 0 0 0 0 0 0
[SRS,HT] 9850 | 1560 | 517 }10029 | 1769 | 543 }11586) 2025 | 632 [12645| 2298 | 695
Overguestimated spread
[PAR(y-1.2)), GREG(y- 1.2)] 19 | 09 | -09] 1.7 0.5 -1.1 ) 33 ] -08 ) 01 14 | -1.6 | -1.2
[PAR(Y-1.5), GREG(Y-1.5)] 44 1.4 42 | 64 2.6 28 11151 27 50 | 104 | 3.7 6.2
[PAR(Y- 1.2)),mps] 324 | 58.0 | 164 ]| 342 | 644 | 135 ]| 412 | 76.5 | 20.8 | 419 | 77.8 | 19.5
{PAR(y-1.5),mps | 2074 | 350 114 | 2184 | 393 106 [ 26171 470 | 130 | 2823 | 519 | 149
Underguestimated spread
[PAR(Y-0.8) ,GREG(y-0.8)] 3.0 22 -0.6 | 0.7 1.1 3.1 22 3.9 23 2.8 9.6 4.5
[PAR(y- 0.5), GREG(Y-0.5)] 8.1 10.5 | 3.8 | 87 | 100 { 10.0 ] 87 | 12.8 | 142 | 10.5 | 21.5 | 19.6
[PAR(Y-0.8)),7mps ] 295 | 426 | 124 | 297 | 464 | 203 | 344 | 545 | 18.6 | 404 | 73.7 | 25.8
[PAR(Y-0.5),mps ] 2028 | 316 102 | 1979 | 331 115 [ 2439 | 410 | 127 | 2686 | 491 158
RME in %

Correct spread guestimate
[PAR(Y), GREG(Y)] 34 | 86 {154 21| 50 | 94| 13} 31 |59 ])o09 | 21|39
[SRS,GREG(Y)] 4.1 105 | 177 ] 24 60 | 11.0] 16 4.0 7.6 1.1 2.8 5.1
[PAR(1),GREG(Y)] 3.4 8.6 154 | 2.1 5.0 9.4 1.3 3.1 5.9 0.9 2.1 3.9
[PAR(1),mps] 34 8.6 154 | 2.1 5.0 9.4 1.3 3.1 5.9 0.9 2.1 3.9
[PAR(Y),mps ] 3.4 8.6 154 1 2.1 5.0 9.4 1.3 3.1 59 | oo 2.1 3.9
[SRS,HT] 3441 352 |1 3831209 214 12391142 145 | 160} 99 | 10.1 | 11.1
Overguestimated spread
[PAR(y-1.2)), GREG(y-1.2)] { 3.5 8.6 153 1 2.1 5.0 9.4 1.3 3.1 5.9 0.9 2.0 39
[PAR(Y- 1.5), GREG(Y- 1.5} ] 35 8.7 157 1 2.1 5.0 9.5 1.4 32 6.0 | 09 2.1 4.0
[PAR(y-1.2)),mps] 7.1 109 | 166 | 4.4 64 | 100 3.0 42 6.5 2.0 2.7 43
[PAR(Y-1.5),7mps ] 16.1 | 183 | 226 | 99 | 11.0 | 135 ] 6.8 7.5 89 | 47 5.1 6.2
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)] 35 8.7 1541 2.1 5.0 9.6 1.3 3.2 60 | 09 22 4.0
[PAR(y-0.5), GREG(y-0.5)] 3.6 9.1 157 ] 22 52 9.9 1.4 33 6.3 0.9 23 43
[PAR(Y-0.8)),mps] 68 | 103 | 163 | 4.1 60 | 103 ] 2.8 3.9 64 | 2.0 2.7 44
[PAR(Y-0.5),mps] 159 | 176 | 219 ] 95 | 103 | 138 ] 6.6 7.1 89 | 4.6 5.0 6.3
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Table A.3. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type C [see Table 6.1].

True superpopulation model is linear (0. = 1) and spread is proportional to x' (y=0.25).

n=10 n=25 n=50 n=80
Strategy ¢ ¢ ¢ ¢
3 7 13 3 7 13 3 7 13 3 7 13
RVIin %
Correct spread guestimate
[PAR(Y), GREG(Y) ] 0 0 0 0 0 0 0 0 0 0 0 0
[ SRS,GREG(Y)] 6.5 10.7 | 5.2 83 8.1 5.4 56 | 105 | 11.7 | 8.8 109 | 7.7
[PAR(1),GREG(Y)] 3791 200 | 464 | 478 | 36.0 | 45.1 } 52.2 | 40.7 | 61.1 | 81.1 | 46.2 | 67.7
[PAR(1),7nps] 379 ] 20.0 | 464 | 47.8 | 36.0 | 45.1 ] 52.2 | 40.7 | 61.1 | 81.1 | 46.2 | 67.7
[PAR(Y),nps] 2027 | 239 | 98.5 | 2091 | 268 97 2326 | 291 103 | 2505 | 298 107
[SRS,HT] 4044 | 495 197 | 4295 | 576 | 206 | 4634 | 619 | 220 | 4917 595 | 216
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)] | -0.7 | -0.4 0.2 20 | 09 | 0.7 02 | -1.2 0.7 0.7 | 21 { -0.2
[PAR(y-1.5), GREG(y-1.5)] -0.5 | -0.2 1.0 36 | -14 | 26 16 | -1.0 | 03 34 | 04 1.9
[PAR(y-1.2)),mps] 1717 1 199 | 82.7 [ 1786 | 225 | 84.4 | 2030 | 251 | 90.6 § 2124 | 256 | 91.1
[PAR(Y-1.5),mps ] 1334 152 | 63.7 } 1370 ) 170 | 68.0 | 1555 | 190 { 67.9 J 1645 | 195 | 73.2
Underguestimated spread
[PAR(Y-0.8), GREG(y- 0.8)] -0.4 1.5 0.3 2.0 1.4 0.3 0.4 1.5 1.0 1.1 0.5 0
[PAR(Y-0.5), GREG(y-0.5)] 2.1 34 2.5 2.7 2.8 1.5 1.5 3.0 29 4.1 1.9 1.3
[PAR(y-0.8)),mps] 2383 | 283 115 2486 | 322 | 116 } 2673 | 338 | 118 ] 2919 ] 348 125
[PAR(y-0.5),mps ] 2909 | 349 142 13071 | 402 | 143 ] 3311 ] 425 150 | 3574 | 432 154
RME in %

Correct spread guestimate
[PAR(y), GREG(Y)] 53 1149 | 245] 31 | 85 J151 ) 21| 55 {98 | 14 | 39 ] 69
[ SRS, GREG(Y)] 55 1 157 | 252 33 89 155 21 5.8 103 | 1.5 4.1 7.2
[PAR(1),GREG(Y) ] 62 | 163 | 297 38 99 | 182 ] 25 6.6 124 | 1.9 4.8 9.0
[PAR(1),7mps] 62 | 163 | 29.7 | 3.8 99 | 1821 25 66 [ 124] 19 4.8 9.0
[PAR(Y),nps] 2451 274 | 346147 ] 163 | 2121101 | 110 § 139 ] 7.1 7.9 10.0
[SRS,HT] 342§ 363 | 4221209 | 221 [ 264 | 141 | 149 | 175 | 99 104 | 123
Overguestimated spread
[PAR(Y-1.2)),GREG(y-1.2)] | 5.3 149 | 246 | 3.2 85 [ 152] 21 5.5 9.8 1.4 39 6.9
[PAR(y- 1.5), GREG(y- 1.5)] 53 149 | 247 | 32 85 11531 21 5.5 9.8 1.4 39 7.0
[PAR(Y-1.2)),mps ] 2271 258 13321137} 153 {205 95 104 | 135 ] 6.6 7.4 9.6
[PAR(y- 1.5),aps ] 20.1 ) 236 | 314 1 121 | 140 | 196 } 8.4 94 | 1271 58 6.8 9.1
Underguestimated spread
[PAR(Y-0.8), GREG(y-0.8)] 53 150 | 246 ]| 3.2 86 {1511 21 5.6 9.8 1.4 4.0 6.9
[PAR(Y-0.5), GREG(y-0.5)] 54 | 151 | 248 | 3.2 86 11521 21 5.6 9.9 1.4 4.0 7.0
[PAR(y-0.8)),mps] 265 291 §36.0 ]| 160 175 | 222 | 10.8 ] 11.6 | 144 | 7.6 83 10.4
[PAR(y-0.5),7ps ] 292 31.6 | 3821771 19.1 {236 | 12.0| 127 | 154 | 84 9.1 11.0
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Table A.4. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type D [see Table 6.1].
True superpopulation model is mildly convex (o = 1.2) and spread is proportional to Jx (y=0.5).

n=10 n=25 n=50 n=80
Strategy < c ¢ c
2.5 5 10 25 5 10 2.5 5 10 25 5 10
RVI in %
Correct spread guestimate
[PAR(Y), GREG(y)] 0 0 0 0 0 0 0 0 0 0 0 0
[SRS,GREG(y)] 1.5 185 | 134 ] 3.0 | 168 | 107} -33 | 19.1 | 248 | 34 | 234 | 17.7
[PAR(1),GREG(Y)] 1341 57 [ 11.8 188} 128 | 93 | 207 | 108 | 13.6 | 27.7 | 102 | 11.7
[PAR(1),mps] 134} 57 [ 118188 128 | 93 |207 | 108 | 13.6 } 277 | 102 | 11.7
[PAR(Y), ®ps) 761 199 | 712} 790 | 218 | 723 )| 880 | 254 | 77.8 | 906 | 252 81
[SRS,HT] 2960 | 802 | 291 | 3183 | 927 | 288 | 3331 ] 1017 | 327 | 3493 | 989 | 316
Overguestimated spread
[PAR(Y-1.2)}, GREG(y-1.2)1 | 3.0 | -1.3 | 2.1 | 43 | -0.7 1.7 { 34 | -08 | 0.7 1.8 03 | -03
[PAR(y- 1.5), GREG(y- 1.5)] 5.7 1.1 4.4 9.8 3.6 2.7 83 2.0 2.8 13.6 39 1.2
[PAR(Y- 1.2)),mps] 523 131 | 499 | 558 | 150 | 51.8 | 609 | 173 | 55.0 | 610 | 165 54
[PAR(Y- 1.5}, ®ps ] 254 | 61.9 | 247 | 277 | 76.1 | 274 | 296 | 83.6 | 29.4 | 320 85 28
Underguestimated spread
[PAR(Y- 0.8}, GREG(y- 0.8)] -0.3 1.5 1.5 ]1-06| 1.0 | -021]-37 ] -0.1 1.8 | 33 13 | 07
[PAR(Y- 0.5}, GREG(y- 0.5)] 22| 39 37 | -1.6 | 48 02 | 57| 38 67 1-591| 76 1.9
[PAR(Y-0.8)), 7tps | 1054 | 278 | 99.5 | 1104 | 309 | 97.9 | 1192 | 347 | 108 | 1239 | 346 | 108
[PAR(Y-0.5),7ps ] 1611 | 431 | 157 | 1695 481 | 147 | 1798 | 529 | 169 | 1916 | 542 | 167
RME in %
Correct spread guestimate
[PAR(Y),GREG(y)] 70 § 133 (229 41| 76 | 143 | 27| 49 | 91 | 19 | 35 | 64
[SRS,GREG(Y)] 7.1 145 | 244 | 42 82 | 151 ] 27 54 11021 1.9 3.9 7.0
[PAR(1),GREG(Y)] 7.5 | 137 | 243 | 45 8.1 150 | 3.0 5.2 9.7 1 21 3.6 6.8
[PAR(1),mps] 75 | 137 | 243 | 4.5 8.1 150 1 3.0 5.2 9.7 | 21 3.6 6.8
[PAR(Y),Tps] 206 | 23.0 | 30.0 § 123 | 13.5 | 188 | 85 93 | 122 ] 59 6.5 8.7
[SRS,HT] 3871 40.0 | 453 | 236 | 244 | 282 ] 160 164 | 189 ] 11.1 | 114 | 13.1
Overguestimated spread
[PAR(y-1.2)), GREG(y-1.2)] | 7.1 132 | 232 | 42 76 | 1451 28 49 9.2 1.9 3.5 6.4
[PAR(Y- 1.5), GREG(Y- 1.5)] 72 | 13.4 | 234 ] 43 77 | 145 ] 2.8 5.0 92 § 20 35 6.5
[PAR(Y- 1.2)),7ps ] 1751 203 {281} 105 120 | 177} 73 8.1 114 | 4.9 5.6 8.0
[PAR(Y-1.5),mps ] 13.2] 17.0 | 256 80 | 101 | 162 ] 54 6.7 | 104 | 3.8 4.7 7.3
Underguestimated spread
[PAR(Y- 0.8), GREG(y-0.8)} 7.0 | 13.4 | 23.1 ] 41 76 | 143 ] 27 | 4.9 9.2 1.8 3.5 6.4
[PAR(Y- 0.5), GREG(Y-0.5)] 69 | 13.6 | 234 | 41 78 | 144 | 26 5.0 9.4 1.8 3.6 6.5
[PAR(y-0.8)),ps ] 23.8 ] 259 | 324|143 ] 154 1202} 9.8 | 104 | 13.1 ] 6.8 7.3 9.3
[PAR(Y-0.5),mps] 29.0 ) 30.7 | 368 ]| 174 | 183 | 226 | 11.9 | 123 | 150} 83 8.8 | 105
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Table A.5. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type E [see Table 6.1].
True superpopulation model is strongly convex (0. = 1.5)and spread is proportional to Jx (y=0.5).

n=10 n=25 n=50 n=80
Strategy ¢ ¢ N ¢
12 25 50 12 25 50 12 25 50 12 25 50
RVIin %
Correct spread guestimate
[PAR(Y), GREG(Y)] 0 0 0 0 0 0 0 0 0 0 0 0
[SRS,GREG(Y)] 36 | 116 | 106} -70 | 84 68 |-11.8| 94 | 200 -3.8 | 12.2 | 144
[PAR(1), GREG(y)] 134 81 | 112]166] 145 | 91 | 183 | 11.9 | 155 | 21.4 | 11.1 | 11.3
[PAR(1),mps] 134 | 8.1 1121166 | 145 1 91 [ 183 | 119 | 155} 214 | 11.1 | 113
[PAR(Y),mps] 344 | 163 | 66.2 1 362 | 177 | 67.8 | 390 | 198 | 750 | 410 | 198 | 744
[SRS,HT] 1171 | 568 | 237 | 1257 | 646 | 237 | 1294 | 691 | 278 | 1406 | 686 | 261
Overguestimated spread
[PAR(Y-1.2)),GREG(y-1.2)] | 3.3 | -0.7 | 22 | 58 1.5 20 | 49 1.6 19 | 24 | -02 | 0.1
[PAR(Y-1.5), GREG(y- 1.5)] 6.5 22 42 | 109 | 6.1 34 1107 | 45 52 | 140 | 54 2.1
[PAR(Y-1.2)),7tps] 249 | 114 | 48.7 1 270 | 130 | S1.0 | 285 | 144 | 564 | 290 | 135 | 51.8
[PAR(y- 1.5),7ps ] 135 | 60.3 | 262 | 149 | 73.7 [ 29.1 | 156 | 77.9 | 34.0 } 170 { 78.0 | 29.6
Underguestimated spread
[PAR(Y-0.8), GREG(y-0.8)] | -1.4 | 0.1 09 ]-23)] 02 ¢}-12]-52}-25] 08} -37] -08]-16
[PAR(y-0.5), GREG(y-0.5)] |} -53 | 03 26 |57 09 |16} 9.1 | -1.7 | 47 | <72 | 3.0 0
[PAR(Y-0.8)),7mps] 458 | 217 | 89.1 | 486 | 241 | 885 | 507 | 258 | 98.8 | 542 | 261 { 957
[PAR(Y-0.5),mps ] 669 | 321 134 | 709 | 356 | 128 | 740 | 379 | 150 | 806 | 394 | 143
RME in %

Correct spread guestimate
[PAR(Y), GREG(Y)] 126 | 17.9 | 287 74 | 103 | 178 | 49 | 67 [ 112} 33 | 47 | 80
[SRS,GREG(Y)] 123 1 189 | 302} 7.1 10.7 | 184 ] 46 7.0 123 ] 32 5.0 8.6
[PAR(1),GREG(Y)] 134 | 186 | 303 ) 80 | 11.0 | 186 ] 54 7.1 121 ] 3.6 4.9 84
[PAR(1),mps] 134 ] 18.6 | 303 | 80 | 11.0 | 186 | 5.4 7.1 121 ] 3.6 4.9 84
[PAR(Y), nps] 265 29.0 | 37.0 | 158 | 17.1 {23.1 | 109 116 | 148 ]| 74 81 ] 10.6
[SRS,HT] 448 | 46.2 | 528 1272 | 280 | 328 | 184 | 189 | 218§ 128§ 13.1 | 152
Overguestimated spread
[PAR(Y-1.2)),GREG(y-1.2)] | 12.8 | 17.8 { 29.0 | 7.6 | 103 | 180 ] 5.1 68 | 113 ] 33 4.7 8.0
[PAR(y- 1.5), GREG(y- 1.5)] 13.0 | 181 §293 ] 78 | 106 | 181} 5.2 69 | 115} 35 4.8 8.1
[PAR(y- 1.2)),7ps ] 2351 26.1 | 350 142 156 {219 ] 97 | 105 ] 140 ] 6.5 7.2 9.9
[PAR(y- 1.5),mps ] 192 1 22,6 | 323 f 116 | 135 | 203 | 7.9 9.0 (130§ 54 6.2 9.1
Underguestimated spread
[PAR(Y- 0.8), GREG(y- 0.8)] 1251 179 [ 289} 73 | 103 | 17.7 | 48 66 | 113 ] 32 4.7 7.9
[PAR(y-0.5),GREG(y-0.5)] | 122 | 179 | 29.1 | 7.2 | 103 | 17.7 | 4.7 67 | 115 ¢ 32 4.8 8.0
[PAR(y-0.8)),mps ] 29.7 ] 31.8 | 395179 | 189 | 245 J 122 | 12.7 | 158 | 83 89 112
[PAR(y-0.5), 7tps ] 348 ] 36.7 | 440 | 21.0 | 21.9 | 269 | 143 | 147 [ 177 ] 99 | 104 | 125
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Table A.6. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type F [see Table 6.1].
True superpopulation model is concave (o = 0.7) and spread is proportional to Jx (y=0.5).

n=10 n=25 n=50 n=80
Strategy c c c ¢
0.2 0.4 07 | 0.2 0.4 0.7 | 0.2 0.4 0.7 | 0.2 0.4 0.7
RMI in %
Correct spread guestimate
[PAR(Y), GREG(Y)] 0 0 0 0 0 0 0 0 0 0 0 0
[SRS,GREG(Y)1 -205) 05 56 |-295] -6.1 38 ]-302) 65 | 98 }[-331] 15 8.4
[PAR(1), GREG(Y)] 41.7 | 193 | 23.0 } 47.1 | 26.0 | 20.5 | 56.7 | 32.1 | 235 )| 676 | 41.5 | 29.3
[PAR(1),mps] 41.7 | 193 | 23.0 | 47.1 | 26.0 | 205 } 56.7 | 32.1 | 235 | 67.6 | 41.5 | 293
[PAR(Y),7ps] -35.6 | -24.0 | -10.5]-36.2 ) -26.3 | -2.7 | -30.8] -26.1 | -12.1]-25.6 | -17.5 | -2.5
[SRS,HT] 579 | 273 175 | 611 | 307 194 | 632 | 316 | 195 | 674 | 349 | 209
Overguestimated spread
[PAR(Y-1.2)),GREG(y-1.2)] | 82 42 37 1102} 47 44 1119 ] 52 3.1 9.9 7.8 3.1
[PAR(y- 1.5), GREG(y- 1.5)] 226 | 123 | 13.0 ] 28.7 | 15.1 97 | 341 ] 178 | 95 | 342 ] 231 | 119
[PAR(y- 1.2)),7ps] -70.3 | -40.8 | -19.5]-70.1 | -42.9 | -13.1 }-70.2 | -44.6 | -21.9 ] -68.8 | -39.2 | -15.9
[PAR(y-1.5),mps ] -76.2 | -40.8 | -19.2|-74.7 } 41.7 | -16.3 | -753 | -43.7 | -21.9 } -75.8 | -39.6 | -18.0
Underguestimated spread
[PAR(y-0.8), GREG(Y-0.8)] 91| -27-09]-83 ]| 41 | -04 }-11.3} -5.0 | -1.1 |-11.2| 35 | -1.7
[PAR(Y-0.5), GREG(y-0.5)] |-16.8| 47 | -3.0 }-207[ -74 | -2.1 |-213( 8.0 | -1.9 |-2L.7| 48 | -1.4
[PAR(y-0.8)),mps] 256 | 54 75 | 260 4.7 158 ] 363 | 6.0 74 | 457 ) 199 | 177
[PAR(y-0.5),mps ] 172 | 75.2 | 523 ] 174 | 795 | 586 | 193 | 824 | 542 | 216 | 110 | 67.3
RME in %

Correct spread guestimate
[PAR(Y), GREG(Y)] 103 148 | 192 61 | 86 | 11.7] 41 | 58 | 7.7 | 28 | 39 | 53
[SRS,GREG(Y)] 92 | 149 [ 197} 52 | 84 [ 119} 34 | 56 | 81 ) 23 | 39 | 55
[PAR(1), GREG(Y)] 122 | 162 { 213 | 74 9.7 12.8 | 5.1 6.6 8.6 | 3.6 4.6 6.0
[PAR(1),nps] 122§ 162 | 213 ] 74 9.7 | 128} 5.1 6.6 86 | 3.6 4.6 6.0
[PAR(Y), 7ps ] 8.3 129 | 181 | 4.9 74 | 115 ] 34 4.9 7.3 24 35 52
[SRS,HT] 268 | 28.6 [ 31.8 | 164} 174 [ 200 § 11.1 | 11.7 | 133 ] 7.8 8.2 9.3
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)] | 10.7 § 151 | 195 ] 6.4 88 | 119 | 43 5.9 79 1 2.9 4.0 5.4
[PAR(y-1.5), GREG(y-1.5)] 114 | 157 | 204] 70 9.2 122 | 4.7 6.2 8.1 3.2 43 5.6
[PAR(Y-1.2)),mps ] 56 | 114 | 172 ] 34 6.5 109 | 2.2 43 6.8 1.6 3.0 49
[PAR(Y- 1.5),7ps ] 50 | 114 | 1721 3.1 6.6 107 ] 2.0 | 43 6.8 1.4 3.0 48
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)] 9.8 146 | 19.1 ] 5.9 84 117 ] 39 5.6 7.7 1 26 3.8 53
[PAR(Y-0.5), GREG(y- 0.5)] 94 | 145 | 189 | 55 8.3 116 | 3.6 5.5 7.7 | 25 3.8 53
[PAR(y-0.8)),7ps ] 11.5 | 152 | 199 | 69 8.8 126 | 4.8 5.9 80 | 34 4.2 5.8
[PAR(Y-0.5),7ps ] 169 § 19.6 | 23.7 [ 102 ] 115 | 147} 7.0 7.8 9.6 5.0 5.6 6.9
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A.2 On approximation accuracy
A.2.1 Point estimator bias

Table A.7 RBPE according to (6.7)) for test situations of Type A [see Table 6.1].
Strategy n=10 n=25§ n=50 n=80
=9 [c=18 [c=35]|c=09{c=18 |c=35]c=09]|c=18[c=35]c=09c=18 [c=3.5
Correct spread guestimate
[PAR(Y), GREG(Y)] 0.0 0.1 -02 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0
[ SRS,GREG(Y)] 0.0 0.1 00 | 00 00 | -01] 0.0 0.0 00 ] 00 0.0 0.0
{PAR(1), GREG(y)] 0.0 0.0 | -0.1] 0.0 00 | 01} 0.0 0.0 0.0 | 0.0 0.0 0.0

[PAR(1),ps ] 00 ] 00 |-01)00]f 00 |-01]00] 00 ] o0o0o]oo]| 00|00
[ PAR(Y), ps] 01| -01|-03]00o] 0o |o0o]oo| 00 o00]oo]| 0000
[SRS,HT] 0100 |-01}o00] 00 ]-01f00] 0o ] oofoo]| 0o|oo0

Overguestimated spread
[PAR(Y-1.2)),GREG(y-1.2)] | 0.0 0.1 02 1 0.0 0.0 0.0 ]} 0.0 0.0 00 1 00 0.0 0.0

[PAR(Y-1.5),GREG(y-1.5)] | 00 | 01 [ 00 | 00 | 00 [ 00 ] 00| 00 [00] 00| 00 | 00
[ PAR(Y- 1.2)), 7ips ] 01} 00 |-03]00| 0o )oofoo]| 00]oo]oo] 0of{oo0
[PAR(Y- 1.5), ps ] 00 | 00 [-01]00] 00 |00} 00| 00 [o00]o00]| 00]o00

Underguestimated spread
[PAR(Y-0.8), GREG(y-0.8) ] 0.0 0.1 -0.2 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[PAR(y-0.5), GREG(y- 0.5)] 0.0 0.0 -0.1 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[PAR(y- 0.8)),mps] 01} -01]-03]00] 00 0000|000 (fo00]o00] 0o0/|o00

[PAR(y-0.5),7ps ] 02|02 ]|-03]-01])-01([-01)00] 00 00} 00] 00|00

Table A.8 RBPE according to (6.7)) for test situations of Type B [see Table 6.1)
Strategy n=10 n=25 n=50 n=80

c=.06|c=.12 Je=25]c=.06[c=.12 |c=.25]c=.06[c=.12 |c=.250¢c=.06[c=.12 |c=.25

Correct spread guestimate

[PAR(Y),GREG(Y)] 00 | 00 [-01]00]| 00 |00] 00| 00 (o00]o0o]| 00/ 00
[SRS, GREG(Y)] 00 | 01 | oo oo | oo |-01]oo| 00]o00] ool 0o oo
[PAR(1), GREG(Y)] 00 | 00 |01} 00| 00 | 00] 00| 00]00]o00]| 00] o0
[PAR(1), 7ips ] 01] 00 [-01]00f 00 ]00]oo] 00]o00}]o00]| 00] 00
[PAR(Y), ps] 00 ] 00 [-01)00] 00 |00 oo | 0o ]|o0o]o0o]| 0ol oo
[SRS,HT] 01) 00 |-01]00)] 00 [-01]00] 00 ] 00fo00] 00/ 00

Overguestimated spread
[PAR(y-1.2)), GREG(y-1.2)] | 0.0 00 | -0.1 1 0.0 0.0 0.0 ] 0.0 0.0 0.0 | 0.0 0.0 0.0
[PAR(y- 1.5), GREG(y- 1.5)] 0.0 0.1 -0.1 | 0.0 0.0 00 | 0.0 0.0 0.0 | 0.0 0.0 0.0
[PAR(y-1.2)),mps ] 0.0 00 [ -011 00 0.0 00 | 00 0.0 00 ] 0.0 0.0 0.0
[PAR(y- 1.5),mps } 0.0 0.1 -0.1 1 0.0 0.0 00 ] 00 0.0 0.0 1 00 0.0 0.0

Underguestimated spread
[PAR(Y-0.8), GREG(y-0.8)] 0.0 0.1 -0.1 1 0.0 0.0 00 | 0.0 0.0 00 | 0.0 0.0 0.0
[PAR(y-0.5), GREG(y- 0.5)] 0.0 00 | -0.1 § 0.0 0.0 0.0 | 0.0 0.0 00 ] 00 0.0 0.0
[PAR(Y-0.8)),mps] 0.0 00 | -0.1 | 0.0 0.0 00 | 00 0.0 0.0 | 0.0 0.0 0.0
[PAR(y-0.5),7ps ] 011} -011}-03}§-011]-011]-011] 00 0.0 00 | 0.0 0.0 0.0
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Table A.9 RBPE according to (6.7)) for test situations of Type C [see Table 6.1]

Strategy n=10 n=25 n=50 n=80

=3 |e=7 |c=13|c=3 [c=7 [c=13|¢=3 [e=7 |[c=13[c=3 [c=7 [c=13

Correct spread guestimate
[PAR(y), GREG(y)] 0.0 01 ] -02] 00} 00 0.0 1 0,0 | 00 00 | 00 §f 00 | 00
[SRS,GREG(Y)] 0.0 0.1 00 f 00| 00 | -01} 00 | 00 00 ] 00 | 00 | 0.0
[PAR(1),GREG(Y)] 00 | 00 | -01 ] 00 | 0.0 0.0 | 0.0 | 0.0 00 } 00 { 00 | 0.0
[PAR(1),7ps] 00 00 {01400 )] 00 {-0.1 } 001} 00 00 | 00 ({ 00 | 00
[PAR(Y),mps ] 021 02 ]-031]-01] -01 0.0 | 0.0 | 0.0 00 y 00 { 00 | 0.0
[SRS,HT] 00 00 {01300 ] 00 |[-01] 00 ] 00 00 J 00 | 00 | 0.0
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)] | 00 | 01 | -0.1 J 00 | 0.0 0.0 } 00 [ 00 00 1 00 ] 00 |} 0.0
[PAR(y- 1.5), GREG(y- 1.5)] 0.0 | 0.1 0.1 ] 00 [ 0.1 0.0 | 0.0 0.0 00 } 00 | 00 | 0.0
[PAR(y-1.2)),mps ] 014 -01 | -02]-01} 00 00 | 00 { 00 00 1 00 | 00 | 0.0
[PAR(y- 1.5),7ps ] 01 01 {-021] 00 | 00 0.1 00 | 0.0 0.0 | 00 | 00 | 0.0
Underguestimated spread
[PAR(y- 0.8), GREG(y- 0.8)] 00 ¢ 01 | 01} 00| 00 0.0 | 0.0 0.0 00 ] 00 | 00 | 0.0
[PAR(y-0.5), GREG(y- 0.5)] 00 | 00 {-01} 00| 00 0.0 } 0.0 { 0.0 0.0 ] 00 | 00 | 0.0
[PAR(y- 0.8)),7ps ] 01} -01]-02}]001} 00 0.0 1 00 0.0 00 J 00 | 00 | 0.0
[PAR(y-0.5),7ps ] 01| 00 | -02}-01{-01 | -01] 0.0 0.0 0.0 ] 00 | 00 | 0.0

Table A.10 RBPE according to (6.7)) for test situations of Type D [see Table 6.1]
Strategy n=10 n=25 n=50 n=80
c=251c=5 [c=10]c=25]|c=5 [c=10]|c=25]|c¢=5 |c=10fc=25}c=5 |c=10

Correct spread guestimate

[PAR(Y),GREG(Y)] 02| 01 | -05])-01{ 00 0.0 | 0.0 00 | -0.1 } 0.0 0.0 0.0
[SRS,GREG(Y)] 031 -021]-04]-01] -01]-02]-01 00 | -0.1 § 0.0 0.0 0.0
[PAR(1),GREG(Y)] 0.0 00 [ -02 ] 00 ( 00 00 } 0.0 0.0 00 | 0.0 0.0 0.0
[PAR(1),mps] 0.0 00 | 02 ] 00 [ 00 00 | 0.0 0.0 0.0 § 0.0 0.0 0.0
[PAR(Y),mps] 01} -0.1 | -04 ] 00 { 00 0.0 | 0.0 0.0 00 | 00 0.0 0.0
[SRS,HT] 01| 00 | 02100 00 00 §| 0.0 0.0 0.0 | 0.0 0.0 0.0
Overguestimated spread

[PAR(y-1.2)),GREG(y-1.2)} | 02 | -0.1 | -04 | 0.1 | 0.0 00 } 00 | -01 | 00 ] 00 0.0 0.0
[PAR(y-1.5),GREG(y-1.5)] { -0.1 { -0.1 | -0.2 | -0.1 | 0.0 [ -0.1 } 0.0 0.0 0.0 | 00 0.0 0.0
[PAR(y-1.2)),mps ] 01 ] -011}-037]00] 00 0.0 | 0.0 0.0 0.1 0.0 0.0 0.0
[PAR(Y- 1.5),7ps ] 0.1 1 -01 1} -01} 00} 00 00 ] 0.0 0.0 0.0 | 0.0 0.0 0.0
Underguestimated spread

[PAR(y-0.8), GREG(y-0.8)] | 02 | 02 | -05 | -0.1 | 0.0 00 | 00 0.0 0.0 | 0.0 0.0 0.0
[PAR(y-0.5),GREG(y-0.5)] | 02| -02 | -04 | -0.1 [ 0.1 | -0.1 } 0.0 0.0 00 | 0.0 0.0 0.0
[PAR(y-0.8)),7ps ] -0.1 | -0.1 04 ] 00 | 00 0.1 0.0 0.0 00 | 0.0 0.0 0.0
[PAR(y-0.5),mps ] 0211 -02 1| -041-01] -01 0.0 | 0.0 0.0 00 | 00 0.0 0.0
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RBPE according to (6.7)) for test situations of Type E [see Table 6.1]

Table A.11

Strategy n=10 n=25 n=50 n=80

c=12|c=25 | ¢=50fc=12|c=25 [c=50]c=12{c=25 [c=50]c=12]c=25 |c=50

Correct spread guestimate
[PAR(Y), GREG(Y) ] 04 08 { -0741-02¢ -01 (01 | -01 0.0 -0.1 0.0 0.0 0.0
[ SRS, GREG(Y)] 07| 05 }|-08]-02]-021]-031]-01]{-01 -0.1 | -0.1 00 | -0.1
[PAR(1), GREG(Y)] 0.0 0.0 02 ] 00 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1
[PAR(1),nps] 0.0 0.0 02 ] 00 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1
[PAR(Y),7ps] 02| -0t | -04 ] 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[SRS,HT] 0.0 0.0 -0.1 | 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Overguestimated spread
[PAR(Y-1.2)), GREG(y-1.2)] | -04 | 04 | 07 } -0.1 } -0.1 § 0.1 | -0.1 | -0.1 | -0.1 0.0 0.0 0.0
[PAR(Y-1.5), GREG(y- 1.5) ] 03] 03 {-05]-0.1] -01 |-01} -0.1 0.0 -0.1 0.0 0.0 0.0
[PAR(Y-1.2)),mps ] 01| -01 | -04} 00 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
[PAR(Y-1.5),mps ] -0.1 | -0.1 -0.2 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Underguestimated spread
[PAR(y- 0.8), GREG(y-0.8)] 051 -04 ] -08]-021]-01}{-011]-01 -0.1 0.0 0.0 0.0 0.0
[PAR(y-0.5), GREG(y-0.5)] 06| -05 | -08})-02]|-02|-011]-01 0.0 -0.1 0.0 0.0 0.0
[PAR(y- 0.8)),mps] 02 -01 | -04] 00 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1
[PAR(Y-0.5),mps] 02| -02 | -041}-01( -01 § -0.1 0.0 0.0 0.0 0.0 0.0 0.0

Table A.12 RBPE according to (6.7)) for test situations of Type F [see Table 6.1]
Strategy n=10 n=25 n=50 n=80
¢=02[¢c=04[c=0.7]c=02{c=04 [c=0.Tfc=02{c=0.4 [¢=0.7[c=02{c=04 [c=0.7
Correct spread guestimate
[PAR(Y), GREG(Y)] 0.4 0.5 0.3 0.2 0.2 0.2 0.0 0.1 0.0 ] 00 0.0 0.0
[ SRS, GREG(y)] 0.5 0.6 04 | 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0
[PAR(1),GREG(Y) ] 0.0 00 | -0.1 ] 00 00 | -0.1 1 00 0.0 00 ] 0.0 0.0 0.0
[PAR(1),mps] 0.0 00 | -0.1 ) 0.0 00 | -0.1 ] 00 0.0 00 ] 00 0.0 0.0
[PARC(Y),nps] 0.1 0.1 -02 ] 0.0 0.0 0.1 0.0 0.0 0.0 1 0.0 0.0 0.0
[SRS,HT] 0.0 0.1 -0.1 ] 0.0 00 | -01 1 00 0.0 0.0 ] 0.0 0.0 0.0
Overguestimated spread
[PAR(y-1.2)), GREG(y-1.2)] | 04 0.4 02 | 01 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0
[PAR(y- 1.5), GREG(y- 1.5)] 0.4 0.4 03 | 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0
[PAR(Y-1.2)),mps ] 0.0 00 | 021 00 0.0 0.1 0.0 0.0 00 | 00 0.0 0.0
[PAR(Y- 1.5),7mps ] 0.0 00 | -0.1 ] 0.0 0.0 0.0 0.0 0.0 00 | 00 0.0 0.0
Underguestimated spread
[PAR(y-0.8), GREG(y- 0.8)} 0.4 0.5 02 ] 01 0.2 0.2 0.0 0.1 00 | 00 0.0 0.0
[PAR(y-0.5), GREG(y- 0.5)] 0.4 0.5 0.3 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.1
[PAR(y-0.8)),mps] 0.0 00 | -02 | 0.1 0.0 0.0 0.1 0.0 00 | 00 0.0 0.0
[PAR(Y-0.5),mps] 01| -011]-021}-011} 00 0.0 0.0 0.0 00 | 00 0.0 0.0
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A.2.2 Variance estimator bias and approximation accuracy for theoretical variances

Table A.13. RBVE and RESTD in % for test situations of Type A. See (6.8), (6.9) and Table 6.1.

[PAR(y-0.5),7ps ]

Strategy and n=10 n=25 n=50 n=80
variance estimator c=1 [¢=25|c=5 |c=1 |e=25[c¢=5 Je=1 [e=25c=5 |e=1 |c=25]c=5
RBVE
Correct spread guestimate
[PAR(Y),GREG(Y)]/ V) 29 | -53 04  -24 5.8 -84 1 -13 4.0 -42 1 04 1.8 -8.1
[PAR(Y), GREG(Y)]/ V2 04 | -3.9 2.7 | -1.7 6.4 -76 | -09 | 42 3.8 1 0.7 2.0 -1.9
[SRS,GREG(Y)]/ V] -12.0| -148 | -7.6 | -5.1 2.9 921 -13 | 23 [-121] 3.7 0.6 -6.3
[SRS,GREG(Y)]/ V2 -8.7 | -138 § 49 ] -3.7 3.9 =771 -08 1 27 -11.8¢1 4.1 08 | -6.0
[PAR(1),mps] 0.8 32 | -15)] 20} 22 63 | 04| 30 | -217}]-12¢1 25 -1.3
[PAR(Y),nps] 04 1 2.0 33 ] 42 64 | 56641 -17|-061]-12] 25 |-13
[SRS,HT] 29 2.0 44 | 23 1.5 17 )42 42 | 44} -39 36 | 6.5
Overguestimated spread
[PAR(y- 1.2)), GREG(Y- 1.2)]/ V) 26 1 -3.7 0.6 1] -1.6 7.0 911 -1.0 5.0 -3.9 1.9 06 | -7.2
[PAR(y- 1.2)), GREG(y-1.2)]/ V2 -0.1 | -2.1 19 | -0.8 76 | -82 }-051] 53 35122 -04{-70
[PAR(Y- 1.5), GREG(y- 1.5)]/ V1 -03 | -3.8 03 | -18 ] 47 {70 25| 39 | 221 01 | -1.5 | 48
[PAR(Y- 1.5), GREG(y- 1.5)]/ V2 27 | -18 | 34 ]1-07 ] 56 [-57]-181 45 | -14] 06 | -1.1 | 43
[PAR(Y-1.2)),7mps] -04 | -0.5 27 1 26 6.9 -68 1 -57] 03 -1.2 ] 214 -05 | -54
[PAR(Y- 1.5),mps ] 0.1 -1.4 23 2.0 4.9 -6.6 | -3.1 33 08 ] 64| -1.0 | 42
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)]/ V] 38} -72 {-19]| 40| 58 | -88 | -1.1 | 45 | -59 | 24 1.2 | -7.2
[PAR(Y-0.8), GREG(y-0.8)1/ V2 -1.2 1 -59 0.0 | -32 6.4 -8.1 ] -0.7 | 48 551 26 1.3 -7.1
[PAR(y-0.5), GREG(Y- 0.5)]/ V) 68 1 -87 | 37| 24| 43 77 1 -1.0 ¢ 45 -6.9 | 4.8 0.0 | 64
[PAR(Y-0.5), GREG(Y-0.5)]/ V3 38 -72 1 -13 1} -14 5.1 -6.8 1 -0.6 4.8 65 ] 5.1 0.2 -6.2
[PAR(y-0.8)),mps ] 06 | -2t | -03] 29 4.7 0.0 § -55 | -1.7 0.0 } 27| 3.1 0.1
[PAR(Y-0.5),mps] 00 | -1.2 12 } 27 38 -14 ]| 53] 20 | -23 ]| 32} -3.7 | -2.8
RESTD
Correct spread guestimate
[PAR(Y),GREG(Y) ] -6.0 871 -53 -123 1 45 -10.2 ] 33 -11.7
[SRS, GREG(Y)] -8.0 -102 | 6.4 -1241¢1 5.0 -14.6 § -2.8 -11.8
[PAR(1),7ps] -1.6 -75 | -2.6 99 | -12 <75 ] 05 -6.3
[PAR(Y),ps] 3.1 -1.2 ] 55 -5.2 ] -02 -3.0 § 08 -6.1
[SRS,HT] 34 42 | 32 i4 | -02 0.1 1.3 14
Overguestimated spread
[PAR(Y- 1.2)), GREG(Y- 1.2)] -5.8 9.2 | 47 -126 1 -4.0 -99 | 22 -11.0
[PAR(Y- 1.5), GREG(Y- 1.5)] -5.0 931 4.6 -116 1 4.1 99 1§ -21 -9.4
[PAR(Y-1.2)), 7ps] 37 -29 ] 5.1 -7.2 1 0.6 -4.7 | 22 -6.8
[PAR(Y- 1.5), 7ps ] 4.8 -4.7 5.6 -9.3 2.8 -6.4 0.6 -8.1
Underguestimated spread
[PAR(y-0.8), GREG(Y- 0.8)] -6.0 -94 | -6.1 -12.5] 4.6 -11.2) 2.7 -11.6
[PAR(Y-0.5), GREG(Y-0.5)] -1.0 9.5} -53 -12.0] 4.8 -11.9 | -2.1 -11.6
[PAR(Y:-0.8)),nps] 27 00 | 46 -33 | -0.1 -1.8 § 1.2 -3.7
2.4 1.1 3.9 -03 | 04 -0.9 | 0.7 -1.3
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Table A.14. RBVE and RESTD in % for test situations of Type B. See (6.8), (6.9) and Table 6.1.

Strategy and n=10 n=25 n=50 n=80
variance estimator €=.06|c=.12 |¢=25]c=.06]{c=.12 | c=25]|c=.06]|¢c=.12 [c=.25]¢=.06{c=.12 | c=.25
Correct spread guestimate
[PAR(Y),GREG(1)]/ V] 02 | -3.1 | -13]-14 | 52 -54 1 -03 36 | -3.2 | -09 23 -3.9
[PAR(Y), GREG(1)]1/ V> 02 | 31 |-13¢3-14| 52 {-54)]-03]( 36 [-321]1-09] 23 |39
[SRS,GREG(Y)]/ V) -11.8)-1551 75 §1-57 ] 28 | -80 | -1.3 1.0 }|-142] 3.1 -0.6 | -5.5
[SRS,GREG(Y)]/ V2 -108 | -17.0 | -7.1 | 4.9 32 -1 ] -1 1.2 |-139] 34 | -04 | -54
[PAR(1),7mps] 02 | 31 |-13]-14| 52 | -54]-03] 36 |-327]-03]| 36 |-32
[PAR(Y),mps] 02 | 3.1 |-13}1-14) 52 | 54})-03] 36 {-32]-03] 36 | -32
[{SRS,HT] 2.8 23 45 | 20 15 | -14 ] 44| 45 [ -53 } -1.8| -1.9 | -1.5
Overguestimated spread
[PAR(Y- 1.2)), GREG(y- 1.2)]/ V1 341 44 | 19|30 32 | 47}-304) 28 | -32]-12) 21 | -21
[PAR(y- 1.2)), GREG(y- 1.2)]/ V2 28 | 3.7 | -14 |28 35 | 47]-30| 29 |-33]-12] 21 |-23
[PAR(y- 1.5), GREG(y- 1.5)]/ V] 74| 93 | -89 | 64| 00 | -7.71-70} 02 | -53 ] -39 | -1.1 | -44
[PAR(y- 1.5), GREG(y- 1.5)]/ V> -56 | -7.0 | -7.0 | -5.7 10 | -72 1 64 06 | -54 1] -34 ]| -1.1 | 47
[PAR(y- 1.2)),mps] 20 | -1.3 | -14 ] 1.6 50 |21 134 00 | 42 ] 34 23 | -15
[PAR(y- 1.5),7ps ] 2.5 1.5 | 32 ] 15 35 | -04 | 33| -25 | -28 71 07 01 | -1.6
Underguestimated spread
[PAR(y-0.8), GREG(y-0.8)]/ V| -16 | -30 | 09 | -09 ] 67 | 68 ] -1.0 | 3.1 38 1 -1.7 [ -21 | 5.8
[PAR(y-0.8), GREG(y- 0.8)]/ V2 -16 | -34 | 08 109 65 | -69]-101] 31 371 -7 21 | -58
[PAR(Y- 0.5), GREG(y- 0.5)]/V 25| =55 09 |33 55 |-1781 0.0 47 | -7.1 1.1 1.8 | -84
[PAR(y-0.5), GREG(y-0.5)]/ Vo 22| -6.0 1.0 |32} 54 | -1.7] 00 46 | -7.1 1.2 1.8 | -84
[PAR(y-0.8)),mps] 011} -24 | -011] 06 4.8 00 § 22| 27 00 | 561 221 00
[PAR(y-0.5),mps] 0.1} -1.7 | 40 | 4.0 65 | 441 -67 ] 33 | 28} 40]) -39 ] -6.8
RESTD
Correct spread guestimate
[PAR(Y),GREG(Y)] -4.7 9.7 | 55 -11.6 ] -5.0 -10.6 | -5.7 -11.0
[ SRS,GREG(Y)] -6.1 9.1} -55 -11.3 ] -4.0 -15.1) 22 -11.2
[PAR(1),mps ] -4.7 9.7 ] -55 -11.81 -5.0 -10.6 | -5.7 -11.0
[PAR(Y),mps] -4.7 9.7 ] 55 -11.81 -5.0 -10.6 { -5.7 -11.0
[SRS,HT] 3.0 59 | 27 3.1 ] -06 0.9 0.8 29
Overguestimated spread
[PAR(y-1.2)),GREG(y-1.2)] -4.9 -87 | -5.6 -104 ] -5.6 9.8 1 -5.1 -9.2
[PAR(y- 1.5), GREG(Y- 1.5)] 2.9 -8.0 | 43 -89 | -5.0 -79 | 33 -6.9
[PAR(y- 1.2)),mps] 4.0 9.7 | 4.7 98 | -6.9 -10.5] -2.6 -8.2
[PAR(Y-1.5),7ps ] 0.1 -5.7 | 04 -3.8 ] -2.8 -39 ] -1.0 2.5
Underguestimated spread
[PAR(y- 0.8), GREG(Y- 0.8)] -5.6 9.1 ] -54 -125] 54 111} -6.2 -12.2
[PAR(y-0.5), GREG(Y- 0.5)] -5.3 -85 | -6.1 -12.6 § 4.7 -12.6 { 4.5 -134
[PAR(y- 0.8)),mps ] 4.7 3.7 1 5.2 -85 ] 34 -6.1 1.1 -8.1
[PAR(y-0.5),mps] 2.7 24 1 50 -1.5 | -0.7 -0.8 ] 05 -2.9
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Table A.15. RBVE and RESTD in % for test situations of Type C. See (6.8), (6.9) and Table 6.1.

Strategy and n=10 n=25 n=50 n=80
variance estimator €=3 |e=7 [c=13}fc=3 {c¢=7 [c=13])c=3 [¢=T7 [c=13]c=3 |c= c=13
Correct spread guestimate

[PAR(Y), GREG(Y)]/ V1 5.9 | 83 | 41(-19] 44 | 67}-20| 42 | 47| 54| 09 | 63
[PAR(Y), GREG(Y)]/ V2 -1.9 -5.7 -0.5 § -0.6 5.6 541 -15 4.7 -4.2 5.8 1.2 -6.0
[SRS,GREG(Y)]/V] -1061-143 | -74 | 53] 28 | -8.0 | -1.5 ] 2.7 j-101] 47 1.7 | -6.8
[SRS,GREG(Y)]/ V2 62 | -119 1 35| 3.7 4.1 -6.4 | -0.8 3.2 95} 52 2.1 -6.5
[PAR(1),mps ] 19 | -1.1 | -21 ] 34 0.1 571 1.0 20 | 22 ] -12] 23 0.5
[PAR(Y),mtps] 04 | -1.0 { 0.7 | 26 32 | -11}-59 ) -15 | -13}-33] -36 | -3.8
[SRS,HT] 3.2 2.0 40 ] 1.9 08 | 21|48 43 | 40| -19 ] -19 | -29
Overguestimated spread

[PAR(Y-1.2)), GREG(Yy-1.2)]/ V] 48 | -719 | 38 1 38| 5.1 71§21 49 | -52 ] 46 23 | -5.8
[PAR(Y- 1.2)), GREG(Y- 1.2)]/ V> 09| 53 {-03]-24| 62 |-58]-15] 54 | -46] 50 26 | -5.5
[PAR(Y- 1.5), GREG(y- 1.5)]/ V1 38| -73 |24} 42| 58 | -77]-27 | 45 | 38| 27 02 | -6.8
[PAR(Y- 1.5), GREG(Y-1.5)]/ V2 0.2 | 4.5 12 30| 68 | 64| 22} 49 | -33 ] 3.0 04 | -6.5
[PAR(y- 1.2)), ps ] 0.8 { -0.6 1.2 | 23 39 | 2271-79 | 25 ] 27|27 43 | 33
[PAR(Y- 1.5), mps ] 02 | -13 1.7 § 2.6 4.1 36 -71 | -13 | -07§ 28] 3.6 | 42
Underguestimated spread

[ PAR(y-0.8), GREG(Y-0.8)]/Vy 57195 | 47367 38 |-71]-19] 37 | -55] 48 1.8 | -5.9
[PAR(y-0.8), GREG(Y- 0.8)]/ V2 -1.7 ] 70 | -12 ) 23| 48 | 58] -13 ] 42 | -50 ] 5.2 21 | -5.6
[PAR(Y-0.5), GREG(Y- 0.5)]/V} 82 |-105]| 651 -33] 3.7 | -72 | -1.8} 44 | -61 ] 3.6 31 | -5.8
[PAR(Y-0.5), GREG(Y- 0.5)]/ V2 401} 80 | 29 -19}| 48 | -59]-12 ] 49 | -55] 4.0 34 | 55
[PAR(Y-0.8)),7ps] 06} -13 | 021 07 1.3 00 } 48| -11 00 ] -34] -35 1 00
[PAR(y-0.5),mps] 1.7 0.9 16 | 14 1.7 | -15 )46 | -15 | -15] 25| -32 ] -33

RESTD

Correct spread guestimate

[PAR(Y), GREG(Y) ] -6.1 93| -39 -10.7 ] -3.8 99 { -0.1 -10.5
[SRS,GREG(Y)] -1.5 -10.2 ] -6.0 -11.5| -4.5 -13.0} -1.7 -11.5
[PAR(1),mps] -0.2 651 0.2 -6.1 1 2.0 71| 23 -4.8
[PAR(Y),mps] 24 -1.1 | 3.6 22 ] -08 251 04 -3.9
[SRS,HT] 33 27 ] 28 -02 } -06 -1.3 1 09 -0.8
Overguestimated spread

[PAR(y- 1.2)), GREG(y- 1.2)] -5.5 93 | 4.6 -10.8 ) -3.7 -10.0 ] -0.1 -10.1
[PAR(Y- 1.5), GREG(y- 1.5)] -5.1 9.1 | 48 -11.1 ] 3.6 -9.1 | -0.5 -10.2
[PAR(Y-1.2)),ps] 2.7 -13 ] 3.6 321 -18 371 08 -4.3
[PAR(Y-1.5),7ps ] 2.6 2.1 | 41 4.7 ] -1.1 36 | 08 -5.6
Underguestimated spread

[PAR(y- 0.8), GREG(Y-0.8)] -5.9 95 ] 48 -1091 -4.0 -10.4 | -0.7 -10.5
[PAR(Y-0.5), GREG(Y-0.5)] -6.8 -102 | 4.9 -11.1] -4.2 -109 ] -1.6 -10.7
[PAR(y-0.8)),mps ] 2.0 051 26 22 1-03 -1.5 1 0.2 3.3

2.8 06 | 2.8 -1.1 1 -03 -1.2 | 07 -2.2

[PAR(Y-0.5),7ps ]
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Table A.16. RBVE and RESTD in % for test situations of Type D. See (6.8), (6.9) and Table 6.1.

Strategy and n=10 n=25 n=50 n=80
variance estimator c=3 le=7 |e=13}c=3 }e=7 }e=13]e=3 jc=T7 [c=13]c¢=3 [c=T7 |c=13
Correct spread guestimate

[PAR(Y), GREG(Y)]/V; 41 1] -59 00 } 03 5.4 8.0 ]| -50 | 47 4.6 | -24 ] -05 | -87
[PAR(Y),GREG(Y)]/ V2 -0.7 | 4.1 24 1.5 6.2 -72 | 45 5.0 42 1-201] 02 | -85
[SRS,GREG(Y)]/V] -1531-162 | 80} -75] 09 | -85 ] -3.2 | 27 [-129} -1.9 | 00 | -7.0
[SRS,GREG(Y)1/V, -11.5) -147 | -5.1 | -5.6 2.1 -7.1 ] 24 32 |-122}) -15 0.3 -6.8
[PAR(1),mps ] 28 | 34 | -1.1 ] -12 1.9 | 48 ) 47| 52 | 22 {-50) 32 | -13
[PAR(Y), mps] 04 | -1.1 30 | 40 54 | 46| -76 | 33 | 26 | 33| 3.2 | -6.6
[SRS,HT} 2.7 2.1 39 | 22 13 | -1.7 ) 48 46 | -52 | -1.8 [ -1.7 | 25
Overguestimated spread

[PAR(y- 1.2)), GREG(y- 1.2)]/ Vi -34 | 32 | -05] -05 6.9 -84 1 48 6.1 43} -08 ] -05 | -7.6
[PAR(Y- 1.2)), GREG(Y- 1.2)]/ V2 00 | -1.3 2.1 0.8 78 | ‘7.5 ] 4.1 65 | 38)] 057 -031]-73
[PAR(Y- 1.5), GREG(Y- 1.5)]/ V3 02 | -25 1.0 | 0.8 5.1 -5.7 | -3.1 59 | 26 1 49| -12 | 47
[PAR(Y- 1.5), GREG(y- 1.5)]/ V3 37 1 02 | 41 | 21 6.1 441231 65 | -18 | 44| -08 | 43
[PAR(y- 1.2)),7ps ] 0.4 0.4 24 1 22 53 | -56)-71} -14 | 29 ] -12 | 00 | -53
[PAR(y- 1.5),7ps ] 1.5 0.5 28 | 24 43 | 501 46| 13 | 23| 52 ] -14 | 42
Underguestimated spread

[PAR(y-0.8), GREG(Y-0.8)]/V -74 | 80 | 2522 47 [ -79} -39 | 56 [-61] -14] 05| -76
[PAR(Y-0.8), GREG(y- 0.8)]/ V> 40 63 | -03§-10( 54 | -71 | -34{ 59 {-58¢}-1.1] -03 |-74
[PAR(Y-0.5), GREG(y-0.5)]/V} 96| 95 | 46| 41| 30 | 67}-39| 49 | -81] 06 | -19 | -6.5
[PAR(Y-0.5), GREG(y-0.5)]/ V> 58 -78 {221 27| 39 | -58}-33]| 52 |-77} 09| -16 | -63
[PAR(Y-0.8)),mps] 01 ] -1.1 | -04 1} 26 3.8 01 ]-6141 25|00 1]-24] -26 | 01
[PAR(y-0.5),mps] 07 | -04 14 | 26 33 | 08 ] 49| 22 | 35| 31| 3.7 ) -34
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Table A.17. RBVE and RESTD in % for test situations of Type E. See (6.8), (6.9) and Table 6.1.

Strategy and n=10 n=25 n=50 n=80
variance estimator =3 [e=7 |c=13}c=3 [c=7 |c=13|c=3 |e=7 [c=13}jc=3 [c=7 [|c=13
Correct spread guestimate
[PAR(Y),GREG(Y) ]/ V1 341 -56 | 0808 ) 39 [-76]-65| 08 [-1.9]-16] -1.8 | -84
[PAR(Y), GREG(Y)]/ V2 0.3 -3.1 1.8 2.2 5.0 6.7 | -5.9 1.2 -5 -1.2 | -1.5 | -8.1
[SRS,GREG(Y)}/ V1 -190) -180 | 97 } 75| -21 | -83 ] -6.0 { -20 [-103]| -3.0 | -1.0 | -73
[SRS,GREG(Y)]/ V2 -1441-152 1 65]1 49| 04 | 67 | 48] -12 | 97 ] 24} 05} -70
[PAR(1),mps] 271 27 | -08] 09 20 | 36| -52] 36 | -07] -3.1 33 | -1.1
[PAR(Y),mps] 09 | -08 | 25 ] 34 46 | 42| -73 | 36 | -1.5] 24 29 | 62
[SRS,HT] 2.1 1.4 3.1 2.1 1.1 -1.7 149} 48 | 48] -1.1 | -1.0 | -23
Overguestimated spread
[PAR(Y- 1.2)), GREG(Y- 1.2)]/ V] -19 | 22 | 08 ] 02 48 | -76 ] -6.5 1.3 | 221 00 0.1 -7.2
[PAR(Y- 1.2)),GREG(Y- 1.2)]/ V2 1.6 0.3 1.9 1.1 5.9 -6.7 | -5.9 1.8 -1.7 | 04 04 | -6.9
[PAR(y-1.5), GREG(y- 1.5)1/ V) 1.7 | -0.3 1.2 1 20 45 | 47} -51 | 26 | -1.1]-41]} -1.0 | 47
[PAR(y- 1.5), GREG(y- 1.5)]/ V2 4.7 2.2 43 | 3.2 5.5 35451 32 | -04] 37| 06 | 42
[PAR(Y-1.2)),mps] 0.9 0.6 1.9 1.6 4.1 51 4-714 27 ) -20] 05} 04 | 49
[PAR(Y-1.5),mps ] 1.7 1.2 25§ 24 38 | 41| -56] -03 | -15]42] -1.3 | 41
Underguestimated spread
[PAR(y-0.8), GREG(y- 0.8)]/ V] 70| -78 | 33 ] -1.4 2.6 -7.1 | =55 2.2 331 -1.24 -15 | -7.0
[PAR(Y-0.8), GREG(y-0.8)]/ V2 3.1 -5.4 -0.9 0.0 3.7 63 | 4.8 2.7 29§ 09 -1.2 -6.9
[PAR(Y-0.5), GREG(Y-0.5)]/ V1 2100 97 | 59139 08 | 63]-62( 17 |-561-09]} -33 | -6.0
[PAR(Y-0.5), GREG(Y- 0.5)1/ V2 S54 1 -70 | 32} -20} 21 53 )55 22 51 )05 3.0 ] -58
[PAR(Y-0.8)),mps } 05 ] -08 { 0471 20 3.0 01 ]-59} -251] 00 7§-17] -21 0.1
0.8 | -03 1.0 | 2.2 27 | -1.0 | -58 1 28 | 27| -27 | 34 | 32

[PAR(Y-0.5),mps ]
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Table A.18. RBVE and RESTD in % for test situations of Type F. See (6.8), (6.9) and Table 6.1.

Strategy and n=10 n=25 n=50 n=80
variance estimator ¢=3 |e=7 |e=13}c=3 |c=7 [e=13]c=3 |c¢=7 [c=13]c=3 |c=7 |c=13
Correct spread guestimate

[PAR(Y), GREG(Y)]/ V1 071 -30|-12]-06]| 34 | 44 -54{ -28 |-85]-03] 19 | -62
[PAR(Y), GREG(Y)]/ V2 6.3 0.9 2.1 1.8 48 | 321 43| 22 | -80 ] 04 23 | -58
[SRS,GREG(Y)]/ V1 <17.7f -154 | -101| 34 | 25 [-70 |} 63} 01 |-13.1] 53 1.7 | 5.8
[SRS,GREG(Y)1/ V2 <102 -125 | 66| 03| 43 | -53}-50]| 08 |-124] 6.0 | 2.1 | -55
[PAR(1),mps] 18 | 04 | 35] 28 | 33 | 35 -27{| 32 |-43] 21 ] -04 | -15
[PAR(Y),ps ] 1.1 ] 42 |1 3140 )| 76 |-73]-65] 22 | -09 | 46| -1.6 | -79
[SRS,HT] 3.8 25 56 | 2.3 1.7 | 23 | 45| 40 | 46 ] 29 | -24 | -3.1
Overguestimated spread

[PAR(Y-1.2)), GREG(Y- 1.2)]/Vy 22 | -1.7 | -14 | 0.2 37 | 53 |55 29 | 80 ] 1.7} 06 | 55
[PAR(Y- 1.2)), GREG(y- 1.2)]/ V3 9.8 2.6 211 29 54 | 38142 20 |-72] 25 { 01 | -50
[PAR(y-1.5), GREG(Y- 1.5)]/V} 8.1 1.1 01 1 04| 27 | 34]-69| 45 (63| -02 | -38 ] -51
[PAR(y-1.5),GREG(y-1.5)]/V, | 170 | 68 | 54 | 40 | 53 [-1.0]-51] 32 | 49| 1.1 | -28 | 42
[PAR(y-1.2)),mps ] 28 | -3.1 1.2 | 03 84 | 83 ] -36 | 48 | -21 21| 02 | -72
[PAR(y-1.5),mps ] 16 | 42 | 09§ -26] 45 | -6.1 ] -5.1 16 | -3.0 ] 22 | 23 | -53
Underguestimated spread

[PAR(y-0.8), GREG(y-0.8)]/ V1 -151 49 {-30)-1.7) 38 | -61]-34}| -15|-93 ] 12 1.9 | -6.3
[PAR(y- 0.8), GREG(Y- 0.8) ]/ V2 53 | -14 | -0.1 ] 0.6 5.1 5.0 -241-09 | -88{] 17 22 | <61
[PAR(y-0.5), GREG(y-0.5)]/V} 6.0 | -8.0 | -36 ] 0.1 36 | 56 ) 44| -12 | -89 ] 1.1 13 | 62
[PAR(y-0.5), GREG(Y- 0.5)]/ V2 1.2 | 44 | -04 ] 26 5.1 43 | -34| 06 | -84 ] 1.7 1.6 | -59
[PAR(y-0.8)),mps ] 12 41 ]-02]29 ) 60 | 01 ] 64 11 00 } 35| 21| 0.0
[PAR(y-0.5),7ps ] 01 ) 22 ) 22130 47 |-24)-56; 01 |-181} -38] -33 ] -39
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