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Bengt Rosén 2000-12-29 

Corrections to the Statistics Sweden R&D Report 2000:5, 
B. Rosén: Generalized Regression Estimation and Pareto πps 

The chief reason for this correction note is that I (a bit ashamed) have to call attention to a flaw due to 
a programming enor. Since a correction note is required, also "ordinary" printer's errors are pointed out 
(admitting mat nowadays printer=author). 

1 Correction of printer's errors (fa/fb = from above/below) 
Page Row Reads Should be 

3 18 ft strategy which satisfies strategy satisfies 
3 3 ft Is yield the Mowing yield the following 
4 14 ft study y variable study variable y 
4 20 ft (2.20) (2.22) 
4 17 & (2.20) (2.22) 
4 19 ft (2.22) and (2.23) (2.24) and (2.25) 
4 18 ft (220)+ (2.4) (222) + (2.4) 
4 15 ft (2.23) (2.25) 
5 3 ft (2.21)+ (2.4) (2.22) + (2.4) 
5 18 ft (2.21) (2.22) 
5 8ft (2.21) (2.22) 
6 1ft REG GREG 
9 14 ft (4.7) (4.6) 
9 19 ft for belief for the belief 
9 14ft strategy is strategy performance is 
10 18 ta Although in addition to 
11 8+fa RBPE a(E[t(y)l/x(y)-l)100%. (6.7) 
13 14 ft har has 
13 23ft The optimal strategy an optimal strategy 
14 Table 6.2 should read as stated on next page. 
16 1ft And A.6 numerical and A.6 provide numerical 

27-32 The c - values should be read as in the subsequent 
Tables A. 13-A. 18. 

2 Corrections caused by the programming error 
The last sentence in the paragraph on the middle of page 16 reads as follows : 

The reason for blank columns under RESTD for spread magnitude C2 is that we (in last 
minute) came to suspect a program bug, which could not be sorted out. 

The suspected bug turned out to exist. Its elimination affects the RBSTD - values at the bottom of 
Tables A.13 - A. 18. Corrected tables are presented on subsequent pages. The RBVE - values are 
unchanged. As a consequence of the altered figures the last paragraph on page 16 should be modified 
as stated below. 

On the accuracy of approximate formulas for theoretical estimator variance : From a 
practical point of view this issue is not important. The interesting aspect is if we could have 
dispensed of all the simulations and compared strategies by using the approximate formulas 
(5.3) and (4.5) instead of simulations. Tables A.13-A.18 show that the approximate variance 
formulas mostly work with surprisingly good accuracy, also in situations with misjudged 
superpopulation. However, a warning for [SRS, GREG] should be issued also here. 
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Corrected tables 

Table 6.2. Studied strategies. True spread is presumed to be proportional to xy. 
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A.2.2 Variance estimator bias and approximation accuracy for theoretical variances 

Table A.13. RBVE and RESTD (in %) for test situations of Type A. See (6.8), (6.9) and Table 6.1. 
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Table A.14. RBVE and RESTD (in %) for test situations of Type B. See (6.8), (6.9) and Table 6.1. 
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Table A.15. RBVE and RESTD (in %) for test situations of Type C. See (6.8), (6.9) and Table 6.1. 
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Table A.16. RBVE and RESTD (in %) for test situations of Type D. See (6.8), (6.9) and Table 6.1. 

VI 



Table A.17. RBVE and RESTD (in %) for test situations of Type E. See (6.8), (6.9) and Table 6.1. 
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Table A.18. RBVE and RESTD in % for test situations of Type F. See (6.8), (6.9) and Table 6.1. 
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and Pareto πps 

Bengt Rosén 

Abstract 
The topic is encounter between generalized regression estimation (GREG) and Pareto 7q>s 
(ftps for probability proportional to size), for a general and a special reason. The former is that 
GREG is a way to employ auxiliary information which can be used for any probability sample 
design. It is of interest to see what it leads to for a particular design as Pareto Tips. 

The special reason is as follows. The embryo to the GREG estimator was presented by Cassel 
et al. (1976), where it appeared as a proxy for the estimator part in an optimal sampling -
estimation strategy, strategy standing for a pair [sample design, estimator]. They showed that 
a strategy is optimal if the sample design belongs to a specific class of 7rps schemes and the 
estimator is what can be characterized as a "forerunner" to the GREG estimator. After Cassel 
et al. (1976) much effort has been devoted to the estimator part of the optimal strategy but 
only little to the design part, the wps scheme. A possible reason may be shortage of 7tps 
schemes with attractive properties. However, at least in the author's opinion, Pareto 7tps is 
such a 7tps scheme. Hence, it is of interest to revisit the optimal strategy problem by studying 
the performance of strategies of type [Pareto 7rps , GREG]. On the basis of the Cassel et al. 
results this strategy is conjectured to be close to optimal. The main conclusion from the find­
ings is that they strongly support the conjecture. 
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Generalized Regression Estimation and Pareto πps 
1 Introduction and outline 
The theme in the paper is encounter between generalized regression estimation (GREG), for 
which Särndal et al. (1992) provide a basic and excellent source, and Pareto ;ips(with 7tps for 
sampling with probability proportional to given sizes), presented in Rosén (1997). There is a 
general as well as a special reason why this encounter is of interest. 

The general reason is that GREG is an approach to exploit auxiliary information, which can be 
applied for any probability sample design. It is of interest to see what it leads to for the par­
ticular design Pareto 7tps. 

The special reason is as follows. The embryo to the GREG estimator was presented in Cassel et 
al. (1976), as a proxy for the estimator part in an optimal sampling-estimation strategy. Here 
"strategy" stands for a pair [sample design, estimator] and optimal relates to expected variance 
as specified in Section 2.3. Cassel et al. showed that optimal strategies are characterized by 
sample design being a specific type of 7tps schemes and the estimator a "forerunner" to the 
GREG estimator. 

Since Cassel et al. (1976) much effort has been devoted to the estimator part of the optimal 
strategy but only little to the design part, the rcps scheme. A possible reason may be shortage of 
7tps schemes with good properties. However, at least in the author's opinion, Pareto Ttps is a 
7tps scheme with attractive properties. It has fixed sample size, simple sample selection, yields 
good estimation precision, admits objective assessment of sampling errors (i.e consistent vari­
ance estimation) and allows sample coordination by (permanent) random numbers. It is there­
fore of interest to revisit the optimal strategy problem, by studying the performance of strate­
gies of type [Pareto 7ips,GREG]. This is the chief task in the paper. 

General regression estimation belongs to the realm "inference under a superpopulation model". 
In that context we follow Särndal et al. (1992) and confine to model assisted (in contrast to 
model dependent) inference, thereby having a "safety - net" if the model is misjudged. In par­
ticular, for an estimator to be regarded as admissible it should be design unbiased (at least 
have negligible bias). The chief role of the superpopulation model is to (hopefully) guide to 
estimators with good precision. 

The paper is organized as follows. To make it fairly self- contained, the next three sections 
give brief reviews of certain basic concepts and results ; Sections 2 as regards optimal strate­
gies, based on Cassel et al. (1976). Sections 3 as regards GREG estimation, based on Särndal et 
al. (1992). Sections 4 as regards Pareto itps, based on Rosén (1997). Strategies of type [Pareto 
ftps, GREG] are introduced and studied in Sections 5 and 6. In particular, Section 6 describes a 
numerical study relating to the optimal strategy problem, with findings presented in the 
Appendix. 

2 On inference from sample surveys 
The frame - work for the subsequent inference considerations is as follows. We consider list 
sampling, i.e. sampling frame and population one - to - one correspond. Probability sampling 
without replacement (wor for short) and with fixed sample size n, is employed. Ideal data col­
lection conditions prevail, full response and no frame and/or measurement problems. 

As stated above, notions and results in this Section 2 stem from Cassel et al. (1976). 
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2.1 Stochastic models for sample data 
2.1.1 Sample design 
U= (1,2,... ,N) denotes the finite population The distribution of the sample inclusion indica­
tors 1= (Ix, I2,..., IN) is referred to as the (sample) design, and is denoted by P. Expectation and 
variance with respect to P are denoted by E and V, and inclusion probabilities by K^= E[Ik] 
and Ttkj = E[Ik-Ij]. Since fixed sample size is presumed, the following relations holds; 

(2.1) 

For s = (Sj, s2,..., sN), sk> 0, a probability proportional to sizes s design, is specified by (2.2) 
below. It requires that the sizes s are known at least up to a proportionality factor. Such a 
design is referred to as a 7çw(s) design. 

TCk is proportional to Sk, (2.2) 

In the following is presumed that (2.2) leads to fulfillment of 7ck< 1, k -1,2, ...,N. (If not, some 
adjusting step has to be taken, e.g. introduction of a "take for certain" stratum.) 

2.1.2 Superpopulations 
The values of the study variable y = (y,, y2,..., yN) are seen as random. Their distribution, the 
superpopulation, is denoted by P. Expectation, variance and covariance with respect to P are 
denoted by S, V and &. In the sequel we confine to the simple superpopulation model below, 
where u.= (\LU |i2,..., |%) and a = (al5 a2,..., aN) are constants while e = (el9 ̂ ,..., eN) are ran­
dom variables. The a-values are referred to as {superpopulation) spread parameters. 

(2.3) 

(2.4) 

2.1.3 Total survey randomness 
Sample selection randomness and superpopulation randomness are assumed to be independent 
of each other, i. e. the distribution of (y, I )=(yx, y2,..., yN, I l 512 , . . . , IN) is the product measure 
P = PxP. Expectation and variance with respect to P are denoted by E and V. 

As a special case of the well-known formula V(Z)= E [V8(Z))] + V[Eff(Z)], where g" stands for 
some information a-algebra, we have the following relation which will be useful later on; 

(2.5) 

2.2 Estimation 
We confine to the "basic" estimation problem, estimation of a population total T(y)=yj +y2 + 
... +yN. An estimator t(y) is a function of I and the y-values for sampled units. It is F-unbi­
ased if E[ t(y) ] = T(y) holds for all conceivable y. It is linear if it is of the form ; 

(2.6) 

where Wk may depend on the sample outcome, i.e. Wk = wk(I), k = 0,1,2,..., N. The class of 
linear P - unbiased estimators is denoted by JJ?). It is readily checked that t(y) in (2.6) 
belongs to -4,(P) if, and only if; 

(2.7) 
Generalized difference estimators, denoted x(y;e)D, constitute a subclass of A(P) • They are 
defined in (2.8) below, where e = (e,, e2,..., ev,) stand for arbitrary, known constants. 

(2.8) 
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For e - 0, x(y ; e)D is the Horvitz-Thompson (HT) estimator; 

(2.9) 

From (2.8) and (2.9) is seen that t(y ; e)D also can be written; 

(2.10) 

2.3 Sampling-estimation strategies 
2.3.1 Some generalities 
A sampling- estimation strategy is a pair [P, t(y) ] of a sample design and an estimator. 

(2.11) 

Search for good strategies is confined to admissible ones. Following Cassel et al. (1976) we 
consider the following performance criterion. 

(2.12) 

2.3.2 Optimal strategies 
Theorem 2.1 below is a slight modification of a result in Cassel et al. (1976), see also Th. 4.1 
in Cassel et al. (1977). For completeness we give a proof (due to Cassel et al.) afterwards. 

THEOREM 2.1 : Assumptions and notation are as hitherto in Section 2. In particular, \i 
and a are as in Section 2.1.2. The minimal possible value of 5(V[t(y)]) over the class 
of admissible strategies [P, t(y) ] with fixed sample size is attained if, and only if, the 
strategy which satisfies conditions (i) and (ii) below; 

(2.13) 

(2.14) 

A strategy which satisfies (i) and (ii) is called an optimal strategy. 

By (2.10), the estimator in (2.14) can, under (2.13), be written; 

(2.15) 

Proof of Theorem 2.1 : In the following is presumed that the strategy is admissible, i.e. 
t(y) has form (2.6) with (2.7) in force. Application of the identity (2.5) with Z = t(y) yields ; 

(2.16) 

To exploit (2.16) we start with the following observations. 

(2.17) 

(2.18) 

In the right hand sum in (2.18) we first apply Schwarz' inequality 
with ak = Gk • Wic • Vlk and bk = Vlk, then the fixed sample size assumption X Ik = n, next Jensen's 
inequality E(Z2) > [E(Z)]2, and finally (2.7), which yields ; 

(2.19) 
(2.16), (2.17), (2.19) and non-negativity of the variance V[5(t(y) 11)] is yield the following 

For any admissible strategy with fixed sample size holds ; 

(2.20) 
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The lower bound in (2.20) is attained for a strategy that satisfies (2.13) and (2.14). To realize 
this, use (2.16) in combination with (2.17) and the following relations, which are readily 
checked, E[tf(t(y;u,<r)nII)] = ( Y V ) 2 / n and V[S(t(y ;n,<r)D|I)] = 0 . Hence; 

(2.211 

Thereby the if- part of the theorem is shown. The "only if" part is realized as follows. For a 
strategy with fixed sample size to attain the minimal value in (2.20) at least the following con­
ditions must be satisfied, (i) There is equality in Schwartz' inequality with P - probability 1. 
This occurs if and only if ak-Wk-Vlk is proportional to Vlk with P-probability 1, which occurs 
if and only if Wk is proportional to 1 /ov. (ii) V[5(t(y) 11)] = 0, which requires 5( t (y) 11) to 
be non - random. Upon some thought is realized that this can only occur under (2.13) and 
(2.14). This concludes the proof of the theorem. 

2.3.3 Situations with auxiliary information 
Here is presumed that values of R auxiliary variables are available for each unit in the frame, 
denoted by xr=(xrl,xr2,...,xrN), r = 1,2,...,R,. The study y variable and the auxiliary variables 
are assumed to be related according to the linear model (2.22) below, with (2.4) in force ; 

(2.22) 

In matrix/vector notation (2.20) can be written y = ̂ r = 1 P r '
x r ' and even more compactly 

with x for matrix multiplication and ' for matrix transposition; 

T2.23) 

Model (2.20) is a special case of (2.3), with Hk- Sr Pr- xrk . Hence, Theorem 2.1 and (2.15) 
yield that conditions (2.22) and (2.23) below are necessary and sufficient for a strategy to be 
optimal under (2.20) + (2.4). 

(2.24) 

(2.25) 

In (2.23) subscript GREG1 is used to indicate that the estimator is a first step towards the gen­
eralized regression estimator, which will be denoted t(y) GREG. 

3 Generalized regression estimation 
Here a brief review of generalized regression estimation (GREG) is given, based on Sämdal et 
al. (1992). First a notation convention which is used throughout the paper. Algebra operations, 
<8> ( = + , - , - , /, etc.), on variables (scalar, vector or matrix valued) stand for component-wise 
operations. Fory = (y1,y2,...,yN)andz = (z„z2,...,zN), y®z= (yjOz], y2®z2, ...,yN®zN). 

3.1 Some basics 
Even if Cassel et al. (1976) derive the estimator t(y)GREG1 in (2.25) in tandem with a 7tps de­
sign , this estimator is well - defined for any design. In fact it is P - unbiased for any design P 
and any values P = (Pi, p2, . . . , p R ) , be they the values in the model (2.22) or some other. The 
precision of the estimator t(y)GREG1, though, depends on the employed p , the better it comp­
lies with the model P, the better estimation precision. 

However, in practice p is normally unknown. The GREG approach to circumvent this is to 
estimate P from the sample data. Then, in the first round one presumes that for all population 
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units (y, X) as well as the spread a are known. General regression analysis results then tell the 
following. (Recall that x stands for population total). 

(3.1) 

(3.2) 

To take a second step towards t(y)GREG, exchange p\ in (2.25) for Br in (3.1) + (3.2); 

(3.3) 

The estimator (3.3) is not practicable, though, since the Br are unknown population quantities. 
This dilemma is circumvented in the "usual" way, by exchanging B for a sample estimate B of 
it. Hereby HT - estimators are used to estimate population totals. With (3.1), (3.2) and (3.3) as 
background this leads to: 

(3.4) 

(3.5) 

(3.6) 

Insertion into (3.3) now yields the generalized regression estimator, the GREG-estimator; 

(3.7) 

For the sake of simplicity, in the sequel we confine to the case with one - dimensional auxil­
iary data x. Then (2.21), and (3.4) - (3.7) takes the following forms; 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

At this junction we point at the fact that a superpopulation model plays two roles, firstly it 
describes the study variable variation over the population, and secondly it is an instrument for 
choosing the sampling-estimation strategy. As always in model contexts there is a dichotomy 
between true and believed model. The former describes how "nature" generated the study vari­
able values, while the latter specifies how the statistician believes they were generated. For 
true as well as believed model, the linear model (2.21) is a possible option, but any type of 
model can in principle be used. 

The distinction between true and believed model concerns in particular the spread parameter 
a. So far a has been viewed as known, at least up to a proportionality factor. Via (3.10) a also 
plays a role in the estimation process. It may also affect the choice of sample design.The stat­
istician must use some value for a, whether he/she knows it or not, a believed ("guestimated" 
is another possible term) value. The true a is of course preferred, but "truth" and "belief may 
deviate. To cope with this possibility, we introduce the following terminology and assumption. 
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For believed models, also called sampling- estimation models, we confine to 
(3.8) + (2.4) with the spread parameter changed to S = (ô\, ô2,..., ô^). (3.12) 

Formula (3.13) states how (3.10) is modified to comply with (3.12). 

(3.13) 

In this context we do not bother about the other model parameter, |3, though, since it enters 
neither in the estimation process nor in the sample design. 

3.2 Estimator variance and variance estimation 
The GREG estimator is a non - linear function of sampled y - values, which makes the issues 
"estimator variance" and "variance estimation" a bit complex. One has to rely on approxima­
tions. Section 6.6 in Särndal et al. (1992) provides the full story, from which some excerpts are 
given below. As stated, we confine to the case with one-dimensional auxiliary data. 

Regarding 6 as an error free estimate of B leads to the approximation; 

(3.14) 

(3.15) 

Relation (3.14) leads to the following approximate variance formula; 

(3.16) 

We presume that a procedure V for estimation of the variance of a sample sum is available for 
the used sample design. Application of V to the sum to the right in (3.16) would yield a vari­
ance estimator V[t(y)GREG], but there is an obstacle. The Ek are not known even for sampled 
units, since they depend on B, which in turn depends on all y-values in the population. To cir­
cumvent this obstacle, the folio wine proxies et- for the Ev are introduced: 

(3A7) 

Next, by exchanging Ek in (3.16) for ek and treating the ek as constants (although they depend 
on the sample), the following variance estimator is obtained; 

(3.18) 

A refinement of (3.18) is achieved by the so called g-method. The point of departure is then 
the following version of t(y)GREG, see e.g. (6.5.18) in Särndal et al. (1992); 

(3.19) 

By (3.19) the following holds : V[t(y)GREG] = V [ T Ek-gk/jtk]. The last term is then 

estimated as follows. Use ek as a proxy for Ek, and treat ek as well as gk as non - random 
(although they depend on the sample), leading to the following alternative variance estimator; 

^WJOREGL = ^ [ X e k ' S k / ^ k ] » with ek and gk treated as non-random. (3.20) 
k € Sample 
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4 On πps sampling 
4.1 Extension of the πps notion 
We start by slightly modifying the notion of Ttps as formulated in Section 2.1.1. Firstly, the 
quantities to the right in (2.2) are re-named. For a size measure s =(Sj, s2,..., sN) and a sample 
size n, the X - (Xu 7^,.., X.N) in (4.1 ) below are called the desired inclusion probabilities ; 

(4.1) 

As before is presumed that X^< 1, k -1,2,... ,N. (If not, some appropriate adjustment should be 
made.) Secondly, the notion of Ttps is made a bit wider than before. Definition (2.2) requires 
that a Ttps design satisfies itk = X.k. From now on we accept a sampling scheme as a Tips design 
if, with n = (Kl,it2,..., TCN) for the factual inclusion probabilities ; 

7tk « Xk holds with good approximation for k — 1,2,..., N. (4.2) 

For a "perfect" Ttps scheme (i.e. a scheme with TLC=XV) the HT-estimator is ; 
(4.3) 

In particular, for a perfect Ttps scheme the estimator in (4.3) unbiased. Under (4.2) it is only an 
"approximate HT - estimator", which may have some bias. However, with no further auxiliary 
information available (4.3) is the "natural" estimator under a nps design (in (4.2) sense). 

4.2 Pareto πps 
Pareto Ttps as defined below was introduced in Rosén (1997). 

DEFINITION 4.1 : A Pareto Tips sample with size measure s and sample size n is selec­
ted as follows. First compute desired inclusion probabilities Xi,)^,..., A,N by (4.1), as 
usual presuming that Xk< 1, k = 1,2,... ,N. Then realize independent random variables 
UI ,U2 , . . . ,UN with uniform distribution on [0,1], and compute; 

(4.4) 

The sample consists of the units with the n smallest Q- values. 

In spite of its name, it is not obvious that Pareto Ttps is a Tips design in the (4.2) sense. How­
ever, this is shown in Rosén (2000) and Aires & Rosén (2000), where also is shown that in 
almost all practical situations t(y)^,s has negligible bias under Pareto Tips. 

The results in (4.5) and (4.6) below are justified in Rosén (1997). 

Asymptotically correct approximation of the estimator variance is given by;. 

(4.5) 

Consistent estimation of V[t(y)„pS] is given by; 

(4.6) 

Remark 4.1 : Computation of (4.5) and (4.6) is facilitated by (4.7) and (4.8) below, where W, 
R and S are as stated in (4.9) and (4.10) ; 

Right hand side in (4.5) = (W- R2/S) • N/(N -1), (4.7) 

Right hand side in (4.6) = (W - R2 / S) • n /(n -1 ), (4.8) 
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(4.9) 

(4.10) 

5 Regression estimation under πps 
5.1 A slightly modified GREG estimator 
Here we consider situations where the study variable y is observed for a size n 7tps(s) sample 
(in (4.2) sense) and an auxiliary variable x is available. For simplicity x is presumed one -
dimensional. The task is to estimate the population total x(y). 

For a (wide sense) 7tps design the GREG estimator can often not be derived precisely as stated 
in Section 3, since one does not know the exact inclusion probabilities Ttk, which are needed 
for HT - estimation. However, the "quasi HT - estimator" (4.3) is available. The definition of 
GREG-estimator is therefore modified by letting t(-),tpS play the role of Î(-)HT • The modified 

GREG estimator is as follows ; 

(5.1) 

(5.2) 

5.2 GREG estimation under Pareto πps design 
5.2.1 General results 
The estimator given by (5.1) + (5.2) works for any 7tps(s) design, in particular for Pareto ftps. 
Formulas for estimator variance and variance estimation, though, differ for Tips schemes. For 
Pareto 7tps, combination of (3.16) and (4.5) yields the following approximate variance formula 
for the GREG estimator, with Ek according to (3.15); 

(5.3) 

Combination of (3.18) and (4.6) yields the following variance estimator, with ek as in (3.17) ; 

(5.4) 

For the g-method the definition of the g-coefficients are modified as follows ; 

(5.5) 

Combination of (3.20) and (4.6) yields the alternative variance estimator; 

(5.6) 

Note that (5.4) and (5.6) can be computed by employing Remark 4.1, after using the transfor­
mations yk —» ek respectively yk —>• ek • gk-
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5.2.2 GREG when the auxiliary variable is used as size measure 
Assume that model (3.8) is in force and that P is positive, which is the typical case in practice. 
Then y and x are positively correlated, often even fairly proportional to each other. The "tradi­
tional" 7tps approach in this type of situation is to use x as size measure, i.e. to use a 7cps(x) 
design, accompanied by t(x)]tps in (4.3). A natural question is therefore : Given that the sample 

is selected with rcps(x), can GREG estimation lead to improvements over t(x)Jcps ? The answer 

is no, as is seen from the following result. 

Under a rcps(x) design the following holds for any 5 > 0: t(y ; ô ) ^ G = t(y)nps. (5.7) 

To realize (5.7), note that for any nps(x) design holds ^ (x )^ = T(X) . Having this, the claim in 

(5.7) follows readily from (5.1). With (5.7) as background, the following results about vari­
ances should "reasonably" hold for Pareto Jtps(x), and they do hold. 

Under Pareto 7rps(x): V[ t (y )^ G ] in (5.3) = V f t ^ J in (4.5), (5.8) 

Under Pareto rcps(x) : The two versions of V[t(y)G^EG] in (5.4) and (5.6) agree, and 

they are both equal to Vftty),^] in (4.7). (5.9) 

It is quite straightforward to checks that (5.8) and (5.9) hold not only "reasonably" but also 
algebraically, and the details are left to the reader. When checking (5.9) note that for s = x the 
g-coefficients are gk = l, £=1,2,...,N, which implies that (5.4) and (5.6) coincide. 

6 The optimal strategy problem revisited 
6.1 Introduction 
In this section we pursue the optimal strategy issue. As in Section 2, the framework is confined 
to estimation of a population total t(y) from observations of y on a wor probability sample 
with fixed sample size, when auxiliary information x, for simplicity one-dimensional, is avai­
lable for each population unit. 

Theorem 2.1 provides background for belief that strategies of type [îtps(a), t(y)G^EG ] are close 
to optimal under the model (3.8) + (2.4). Moreover, since we regard Pareto Ttps as a particu­
larly attractive 7tps design, the strategy [Pareto 7tps(o), t(y)G^EG ] will be of special interest, 
leading to the conjecture in (6.1) below. There, and throughout the paper, is presumed that 
compared strategies have the same sample size, and also that estimators have negligible bias. 
Hence, strategy is measured by estimator variance. 

Is the following conjecture true ? Under (3.8) + (2.4), the performance of the strategy 
[Pareto 7tps(a), t(y ; <s)^G ] is superior, at least never notably inferior, to that of any 
other admissible strategy. (6.1) 

An aspect of (6.1) concerns quantification of the no - answer for the strategies considered in 
Section 5.2.2, to use the auxiliary x as size measure in a 7tps design accompanied by estimation 
according to (4.3). This leads to the following question. 

How much inferior to [Pareto Tcps(c), t(y) ̂  ] is [Pareto rcps(x), t(y) m ] ? (6.2) 

Model based and model assisted procedures of course suffer in some respect if the model is 
misjudged. In a model based approach this commonly leads to point estimation bias. In a 
model assisted approach, as GREG, misjudgment does not lead to bias but affects estimation 
precision adversely. It is of interest to obtain quantitative information about the precision loss 
by model misspecification. We shall considérer two types of misspecification. In the simplest 
one is assumed that true and believed superpopulation models both are linear, while the true 
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spread a is misjudged to be 8. Striving to be close to optimal it is natural to employ the strat­

egy [Pareto 7tps(S), t(y ; ö ) ^ G ] in which 8 affects the sample design as well as the estimator. 

This raises the following question. 

If (3.8) + (2.4) is the true model, but (3.12) is used as sampling-estimation model, 
how inferior to [Pareto rcps(a), t(y ; a) ̂ G ] is [Pareto rcps(S), t(y ; Ô) ̂  ] ? (6.3) 

A more complex misspecification possibility is that the true model is nonlinear, while the lin­
ear model (3.12) is used as sampling-estimation model, with correct or misjudged a . 

How does [Pareto rcps(8), t(y ; ô) ̂ Q ] perform when the true model is non - linear ? (6.4) 

6.2 Performance measures for strategies 
To study the questions (6.1) - (6.4), some performance measure for strategies must be used. 
Although optimality in Theorem 2.1 relates to the criterion 5 (V[ t (y ) ] ) , its design analogue 
V[t(y)] will be employed, in spite of its drawback to depend on the specific study variable y. 
It is used for the following main reasons, (i) When true and believed superpopulation models 
differ, V[t(y)] is the more natural measure, (ii) When the models agree and the sample size is 
not "too small", S ( V[t(y)] ) and V[t(y)] lie close to each other. In particular, the notion 
"close to optimal" is fairly much the same for the two criteria. The measure V[t(y)] is not 
used as it stands, though, but in transformed versions. The quantities RME and RVI specified 
below are preferred since they, although being essentially equivalent to V[t(y)], have more 
concrete interpretations. 

The relative margin of error (in %) , abbreviated RME, for the strategy [P, t(y) ] is ; 

(6.5) 

Conjecture (6.1) provides background for name and choice of denominator in the next notion. 

The relative variance increase (in %), abbreviated RVI, for strategy [P, t(y) ] is ; 

(6.6) 

RME and RVI are not independent measures, though. The following holds. RVI [P, t(y) ] = 

[(RME[P,t(y) ]/RME[Pareto 7ips(a), t C y j ô ) ^ ])2-1] • 100 %. However, we think it facilitates 

for the reader if both RME and RVI are presented 

One would like to be able to carry out strategy comparisons relating to questions (6.1)-(6.4) by 
employing nice analytical formulas for RME and RVI. To the best of our understanding , 
though, it is in vain to hope for such formulas. The feasible approach is to carry out a numeri­
cal study for a selection of strategies and test situations, and this approach was used. 

The simplest would have been to take for granted that (4.5) and (5.3) work with "good 
enough" accuracy, and to use them to derive RME and RVI. This would have required fairly 
modest numerical efforts. However, GREG as well as Pareto 7tps are large sample procedures, 
and it is not obvious how accurately their formulas work for finite samples. To gain informa­
tion also on that question, a more elaborate numerical approach was used. Numerical results 
were derived in a Monte Carlo study, with repeated independent samples. 
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6.3 Approximation accuracy 
The considered accuracy questions are listed below. 

Point estimator bias 

Särndal et al (1992) show that t(y)GREG is consistent under general conditions. Rosén (2000) 

and Aires & Rosén (2000) show that t(y) under general conditions has negligible bias for 

Pareto ftps. Of special interest was to see if the same holds for the combined estimator 

t(y ; à) GREG • The performance measure is relative bias for point estimator (RBPE) ; 

Variance estimator bias 
The variance estimators (3.18), (3.20) and (4.6) are based on large- sample considerations. 
Even if not unbiased they are consistent under general conditions. Another task of special 
interest was to find out to what extent this holds for the combined variance estimators (5.4) 
and (5.6).The performance measure is relative bias for variance estimator (RBVE); 

(6.8) 

Accuracy in approximate formulas for the theoretical estimator variance 
The chief interest in this context relates to the large-sample formula (5.3). When evaluating its 
accuracy we use standard deviation, abbreviated D, as basic quantity (instead of variance) . 
The performance measure is relative error for theoretical standard deviation (RESTD) ; 

(6.9) 

The performance measures (6.5)-(6.9) involve the theoretical quantities x(y), E[t(y)], V[t(y)] 
and E (V[t(y)]). Even though all population values are known, only t(y) can be computed 
exactly, in lack of manageable expressions for the others. Numerical values for them were 
derived as means based on 3000 independent samples, see (6.10). Since as many as 3 000 runs 
were made, the means are regarded as true values, even if "empirical" is a more adequate term. 

(6.10) 

6.4 The numerical study 

6.4.1 Test situations 
A test situation is specified by values for a study variable y and an auxiliary variable x for 
each unit in a population. The following general framework was used, judged to embrace a 
versatile family of test situations with parsimonious parameterization. 

The values of the auxiliary variable x were set to ; 

(6.11) 

The study variable values y were derived by first specifying values for (non-negative) 
parameters a, P, c and y, and then generate y-values by relation (6.12) below, where 
Zi,Z2,... ,ZN stand for independent standard normal random variables ; 

(6.12) 

In the notation used in Section 2.1.2 this means ; 

(6.13) 

In conjunction with model (6.12) we use the following terminology from Rosén (1997). The 
plot {(xk, P • x" ), k = 1,2,..., N} is called the y - x - trend. Its shape is determined by the 
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parameter a , it is linear when a lies close to 1, convex when a > 1 and concave when a < 1. 
The parameters c and y determine how much the y - values spread/scatter around the trend, y 
is called spread shape and c spread magnitude. 

There is an abundance of potentially interesting test situations, but many reasons call for tem­
perance, not least the space required for presentation of numerical findings. The study was 
confined to six types of test situations, labeled A - F , which are specified in Table 6.1. We 
believe, or at least hope, that these situations allow for fairly general conclusions. Two 
parameters were held fixed, the population size N and the regression coefficient (3 ; 

Only population size N = 200 was considered, P was set to 1. (6.14) 

The reason for setting (3 = 1 is that the performance measures depend on the parameters (3 and 
c only through their ratio p / c . Hence one of P and c can be normalized. 

Table 6.1 Parameter values in (6.12) and (6.13) for the 
considered test situations 

Below we give some comments on the parameter choices. 

(i) The superpopulation model is linear in situations A, B and C, while non-linear in D, E and 
F, "mildly" convex in D ( a = 1.2), "strongly" convex in E ( a = 1.5), concave in F ( a = 0.7). 

(ii) The y-scatter was (hopefully) held at practically realistic levels by the following consider­
ations. For the unit with the largest x-value, i.e. unit N = 200, yN should not deviate from its 
trend value (= x£, when P= 1) by more than (roughly) half the trend value. With 2 as a practi­
cal upper bound for | Z |, the following restriction was laid on c ; 

(6.15) 

For each combination of a and y three spread magnitudes c were used. The largest, denoted C3, 
was given by the right hand side in (6.15) for x2oo = 200. The other two, c2 and Ci, were set to 
(roughly) c2 = C3/2 and Cj = c2/2. 

(iii) The normal variâtes Zi, Z2,..., ZN were generated by the SAS - function NORMAL with 
seed = 555. This seed value was used to achieve comparability with findings in Rosén (1997). 

6.4.2 Sampling-estimation model 
Sampling-estimation models (or "believed" model) were chosen in agreement with (3.12), i.e. 
(3.8)+(2.4) with spread parameter 8. Correct spreadguestimate is said to be at hand if 8 = a, 
overgestimated spread if 8 > a and undergestimated spread if 8 < a . 
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6.4.3 Sample designs and estimation procedures 
Sample designs were confined to Pareto 7tps. Note that for s = 1 Pareto Ttps is simple random 
sampling. Two estimation modes were considered, "straight" Ttps estimation by (4.3) (which is 
HT - estimation for simple random sampling), and GREG estimation by (5.1) and (5.2). The 
following shorthand for designs and estimation procedures is used. 

PAR(p) stands for the Pareto 7tps(xp) scheme, (6.16) 

SRS stands for simple random sampling [ = PAR(0) ] , (6.17) 

jqps stands for the estimator ^ ( y ) ^ in (4.3), HT for Horvitz-Thompson estimation, (6.18) 

GREG(p) stands for the estimator t(y j x " ) ^ , according to (5.1) and (5.2). (6.19) 

6.4.4 Sample sizes 
When sample sizes were decided on, attention was paid to sampling rate as well as sample 
size per se, against the following background. Performance for nps procedures commonly 
depends quite pronouncedly on the sampling rate, which therefore was wanted to range from 
"small" to "large". Approximation accuracy usually har sample size as the most vital aspect. 
The following sample sizes were used in the study, n = 10, 25, 50 and 80. Since population 
size was set to 200 [see (6.14)], sampling rates range from 5% to 40%. 

6.4.5 Considered strategies 
Here we adhere to the notation in (6.12). In particular, spread, which so far has been referred 
to by a, will in the sequel mostly be specified by the y in (6.12), a and y corresponding by the 
relation a = ( c • x £ : k = 1,2,..., N ) , i.e. spread is proportional to xy. In combination with 
(6.16) - (6.19) the strategy in interest focus, [Pareto 7tps(a), t(y ;«)GREG ] , is denoted; 

[PAR(y),GREG(y)]. (6.20) 

Conjecture (6.1) says that (6.20) is the optimal strategy under (6.12) + (6.13), at least close to 
being so. When appraising the conjecture, any other admissible strategy with fixed sample size 
is a "challenger". The conjecture cannot be proved by a numerical study, though, which can 
encompass only a finite number of strategies and test situations, while it could be disproved. 
The latter would happen if other admissible strategies exhibit negative RVI [see (6.6)] of non -
negligible magnitude. However, the conjecture is supported if no considered strategy has (sub­
stantially) negative RVI-values, the more supported the more diverse the family of alternative 
strategies is. 

One way of classifying strategies is by mode for exploiting auxiliary information. In the pre­
sent context two kinds of auxiliary information is at hand, the "y - prognostic" variable x and 
the "uncertainty measure" a. Both may enter into a strategy in either of the following ways. 
The information is (i) used in the sample design as well as in the estimator, (ii) used only in 
the estimator, (iii) used only in the sample design or (iv) not used at all. 

The standard example of a strategy without use of auxiliary information is simple random 
sampling followed by straightforward estimation, [ SRS, HT]. This strategy was included, not 
as a challenger to (6.20) though, mainly as a benchmark strategy. However, also the "naïve" 
SRS may be accompanied by sophisticated estimation, e.g. the strategy [SRS, GREG(y)]. Then x 
as well as a (or y) enter in the estimation step, but not in the sample design. 

A "traditional" 7tps strategy, as for instance [PAR(l),7tps] employs only x, as size measure in a 
Tcps(x) design, but neither x nor a is used in the estimation step. A nearby thought is therefore 
that this strategy might be improved by use of auxiliary information in the estimation step, e.g. 
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by employing [PAR(l),GREG(y)]. However, as discussed in Section 5.2.2, improvement along 
this line is a chimera. In the present notation, (5.7) says the following; 

(6.21) 

Table 6.2. Studied strategies. True spread <y is proportional to xr. 

Another possibility for employing just one of x and a /y is given by [ PAR(y), 7cps ] . This strat­
egy borrows sample design from the presumed optimal strategy (6.20), but not estimator. 

So far we have tacitly presumed "ideal" modeling conditions, with believed and true models 
equal, and the latter being linear. In practice model misspecifications occur, though. It is there­
fore of interest to try to find out how robust to model misspecification strategies are. This is 
the issue in questions (6.3) and (6.4), which both relate to cases with linear sampling-estima­
tion model. Question (6.3) concerns misspecification of spread when also the true model is 
linear, while (6.4) concerns cases where the true model is non- linear. For misspecification of 
spread, we use the following terminology. Given that a«= xY, spread is mildly respectively 
strongly overguestimated for 8<= xL2'Y respectively 5«= x1 5 r. Analogously, it is mildly re­
spectively strongly underguestimated for 8 «= x ' Y respectively 6 °= x ' Y. 

For the strategy in focus of interest, [PAR, GREG], the believed spread 5 affects design as well 
as estimator. To investigate robustness against model misspecification the following strategies 
were considered ; {[ PAR(K)) , GREG(K)] : K = y • 1.2, y • 1.5, y • 0.8, y • 0.5}. 

The strategies mentioned in the above discussion are listed in Table 6.2 below. Note that all of 
them are admissible and have fixed sample size. 
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6.5 Conclusions from the numerical findings 
Results from the numerical study are presented in the Appendix. Below we formulate our con­
clusions so that the reader may agree or disagree when examining the Appendix figures. Com­
parison of strategies is considered first, and approximation issues thereafter. 

6.5.1 Comparison of strategies 
The discussion is structured by the questions (6.1)-(6.4). 

Conclusions relative to question (6.1) : Conjecture (6.1) concerns linear superpopulation 
model and correctly specified sampling-estimation model. Situations with linear superpopula­
tion are those labeled by A, B ad C in Table 6.1. Corresponding RME and RVI values are pre­
sented in Tables A.1, A.2 and A.3 in the Appendix. As already stated, the conjecture cannot be 
proved, only supported or disproved. The crucial quantities are the RVI - values for strategies 
other than [PAR(y),GREG(y)]. Non-negative RVI values support the conjecture, while nega­
tive ones cast doubt over it. 

The following is seen in Tables A.l, A.2 and A.3. For the considered strategies, sample sizes 
and spread alternatives almost all RVI are positive. Most of them solidly positive, but there are 
some exceptions. Firstly, in situation B [PAR( 1 ),GREG(y)], [PAR( 1 ),irps] and [PAR(y),7ips] 
are equally efficient as [PAR(y), GREG(y)], all having RVI = 0. However, this is understood 
by what is stated in (6.21) and the fact that y = 1 in situation B. 

Secondly, and more surprising, negative RVI tum up for [PAR(y- 1.2)),GREG(y • 1.2)]. This stra­
tegy was included in the study on the "merit" model misspecification, which was expected to pull 
in the direction "positive RVI". However, whatever be the explanation for the negative RVI 
values, they are so small that our overall conclusion is as stated in (6.22) below. We do not 
have a clear understanding of the negative RVI, though. Possible explanations are : (i) Random 
disturbances due to the simulation approach, (ii). Perhaps slight over - guestimation of spread 
in fact is advantageous. 

From survey practical point of view, the findings strongly support the conjecture 
that [Pareto 7rps(a), t(y ; G)GREG ] is close to being an optimal strategy. (6.22) 

Another observation from Tables Al, A2 and A3 is as follows. The "naïve" strategy [SRS,HT] 
is severely outperformed by all strategis which employ auxiliary information in some way. 
However, [SRS , GREG(y)] yields substantial improvement of [ SRS , HT ], sometimes but not 
always it works better than [ PAR( 1 ), 7tps ]. 

Conclusions relative to question (6.2) : Also here the numerical background is given in 

Tables A l , A.2 and A3. As is seen, in line with conjecture (6.1) [Pareto 7tps(a),t(y;<T)^EG] 

never performs worse than [Pareto 7rps(x), t(y)reps ], and in many situations considerably better. 

Its superiority varies, though, from situation to situation. As already discussed, when y = 1, the 
two strategies are equally good, while RVI for [Pareto 7tps(x),t(y)nps ] in some situations is as 

high as 50% and even more. 

Conclusions relative to question (6.3) : Again the numerical background is provided by 
Tables A.l, A.2 and A.3. The findings are summarized as follows. 

When true superpopulation model is linear, misspecification of spread shape has quite 
small adverse effect on the efficiency of the strategy [Pareto Tips, t ( y ) ^ G ] . (6.23) 

Conclusions relative to question (6.4) : The issue is behavior of [Pareto 7qjs(o), t(y ; o)^^ ] 

when the superpopulation model is judged to be linear, although it is not. Here Tables A.4, A. 5 

15 



and A.6 numerical background. It is difficult to draw clear-cut conclusions, and we leave the 
figures to the reader's own reflections. A tentative conclusion may be as follows. 

If one is in serious doubt about the shape of the trend in the superpopulation model, it 
may be wise to use simple random sampling with GREG estimation instead of trying 
to be optimal with a strategy of type [Pareto Ttps, t ( y ) ^ G ] . (6.24) 

6.5.2 On approximation accuracy 
We adhere to the disposition in Section 6.3. 

On point estimator bias : Numerical background is given in tables A.7- A. 12. The clear mes­
sage from the figures is that the point estimators under consideration work with negligible bias 
in all types of situations. Perhaps a warning should be issued for [SRS,GREG]. In particular is 
seen that the studied strategies live up to being model assisted in the sense that point estima­
tors have negligible bias also under model misspecification. 

On variance estimator bias : Numerical background is given in tables A. 13 - A. 18. Our overall 
conclusion is as follows. Even if the variance estimators are not exactly unbiased, they work in 
an acceptable way in all types of situations. A warning for the strategy [SRS, GREG] should 
perhaps be given also in this context. 

On the basis of general experience from GREG estimation one believes that the V2 - estimator 
in (5.6) should perform better than the Vi - estimator in (5.4). On an overall basis this is con­
firmed by the numerical findings. The difference between the estimators is not very pro­
nounced, though. 

On accuracy in approximate formulas for theoretical estimator variances : From a survey 
practical point of view this is not an important issue. The most interesting aspect is perhaps if 
we could have dispensed of all the simulations, and based our comparisons of strategies on the 
approximate formulas for estimator variances. A look at the figures in Tables A. 13 - A. 15 
shows that the approximate variance formulas sometimes can be misleading. 
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Appendix. Numerical results 
The numerical findings are collected in Tables A.1 -A.18. 

Section A.l contains findings on performances of the different strategies. As regards "abso­
lute" performance, the measure relative margin of error (RME) is most relevant. However, 
when comparing strategies it is easier to look at relative variance increase (RVI). Both are 
reported. 

Tables A.1 -A. 14 include both the strategies [PAR(l),GREG(y)] and [PAR(l),7cps] although we 
know they are equal, see (6.21), for the simple reason that it is easy to forget about their 
equivalence. 

Section A.2 contains findings on approximation accuracy. Tables A.7-A.12 concern relative 
point estimator bias (RBPE) and Tables A. 13 - A. 18 relative variance estimator bias (RBVE). 
Tables A.13-A.18 also present relative errors for the approximate variance formulas. 

In Tables A.13-A.18 equivalent strategies are not duplicated. Only values for [PAR(l),rcps] are 
listed, not for its equivalents [PAR(l),GREG(y)]/Vi and [PAR(1),GREG(Y)]/V2. The reason for 
blank columns under RESTD for spread magnitude C2 is that we (in last minute) came to sus­
pect a program bug, which could not be sorted out. 
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A.1 Relative margins of error (RME) and relative variance increase (RVI) 

Table A.l. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type A [see Table 6.1]. 
True superpopulation model is linear (a = 1) and spread is proportional to Vx (y=0.5). 
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Table A.2. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type B [see Table 6.1]. 
True superpopulation model is linear (a= 1) and spread is proportional to x (y = l ) . 
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Table A.3. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type C [see Table 6.1]. 
True superpopulation model is linear (a = 1) and spread is proportional to x (y = 0.25). 
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Table A.4. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type D [see Table 6.1]. 
True superpopulation model is mildly convex (a = 1.2) and spread is proportional to Vx (y= 0.5). 
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Table A.5. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type E [see Table 6.1]. 
True superpopulation model is strongly convex (a = 1.5)and spread is proportional to Vx (y= 0.5). 
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Table A.6. RVI and RME in % [see (6.5) and (6.6)] for test situations of Type F [see Table 6.1]. 
True superpopulation model is concave (a = 0.7) and spread is proportional to x (y= 0.5). 
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A.2 On approximation accuracy 

A.2.1 Point estimator bias 

Table A.7 RBPE according to (6.7)) for test situations of Type A [see Table 6.1]. 

Table A.8 RBPE according to (6.7)) for test situations of Type B [see Table 6.1] 
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Table A.9 RBPE according to (6.7)) for test situations of Type C [see Table 6.1] 

Table A.10 RBPE according to (6.7)) for test situations of Type D [see Table 6.1] 
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Table A.11 RBPE according to (6.7)) for test situations of Type E [see Table 6.1] 

Table A.12 RBPE according to (6.7)) for test situations of Type F [see Table 6.1] 
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A.2.2 Variance estimator bias and approximation accuracy for theoretical variances 

Table A.13. RBVE and RESTD in % for test situations of Type A. See (6.8), (6.9) and Table 6.1. 
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Table A.14. RBVE and RESTD in % for test situations of Type B. See (6.8), (6.9) and Table 6.1. 

28 



Table A.15. RBVE and RESTD in % for test situations of Type C. See (6.8), (6.9) and Table 6.1. 
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Table A.16. RBVE and RESTD in % for test situations of Type D. See (6.8), (6.9) and Table 6.1. 
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Table A.17. RBVE and RESTD in % for test situations of Type E. See (6.8), (6.9) and Table 6.1. 
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Table A.18. RBVE and RESTD in % for test situations of Type F. See (6.8), (6.9) and Table 6.1. 
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