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roles, functions, and system designs 

Bo Sundgren 
Statistics Sweden and Stockholm School of Economics 

Contribution to Baltic DB'94 -
Baltic Workshop on National Infrastructure Databases: 

Problems, Methods, and Experiences 

Abstract. Starting from a general discussion of the nature, purposes, and functions of 
statistical information systems (and systems of such systems), the paper presents some recent 
developments concerning the design and architecture of such systems. 

1 Statistical information systems 

1.1 The purposes of statistical information system 

An information system can be generally defined as a system, which helps a number of 
persons, the users of the information system, to establish and maintain their respective mental 
models, or mind models, of a certain piece of reality, the object system, or universe of 
discourse, of the information system. By performing this fundamental task, the information 
system can help its users to develop an understanding of the object system and its 
subsystems and components, and to plan, implement, monitor, and evaluate actions visavi the 
object system. 

A statistical information system is an information system, which serves its purposes by 
providing its users with statistical information and related information services to (groups 
of) statistics users. The statistics users are assumed to have tasks, which imply needs to 

• describe and understand the object system and its subsystems and components; and/or 

• plan, implement, monitor, and evaluate decisions and actions vis-à-vis the object system. 

Some typical examples of statistics users are 

• companies, organizations, and governmental organs, who want to plan, control, and 
evaluate their activities; 

• researchers, who want to develop a better understanding of society and to help to identify 
and solve problems in society; 

• persons and families, who want to plan their own lifes and to participate in democratical 
processes. 
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1.2 Statistical vs non-statistical usage of information 

What is the difference between statistical and non-statistical usage of information? Statistical 
information is typically used for decisions that may be vaguely described by such terms as 
"strategical", "management-level", "policy-oriented", if the usage environment is a business or 
government organization. In a research environment statistical information is typically used 
for getting an overview of a more or less complex system (sometimes called the universe of 
discourse or the system of interest), and for formulating and testing hypotheses, and ultimately 
theories, about this system. 

We may describe the typical usages of statistical information as being of a directive nature: 
statistical information gives direction (advice, guidance) to the decision-maker or scientist, but 
it is usually not the only factor that determines the final conclusions and actions. 

As a contrast, non-statistical usage of information is typically much more operative. On the 
basic activity level of a business or government organization, decisions are oriented towards 
concrete, individual "cases" like the processing of a certain order from a certain customer, or 
the court trial of a certain person, suspected to have committed a certain crime at a certain 
time, in a certain place. 

To be precise, one should distinguish between "statistical usage ofinformation" and "usage of 
statistical information". Very often, of course, the two go together, but there are also 
situations, where statistical information is used for non-statistical purposes, that is, 
information of a nature, which is usually used for directive purposes as those described above, 
is instead being used for operative, "individual case" oriented decision-making. For example, 
consider a physician who is treating a patient. He or she may may collect a lot of statistical 
information about the health condition of the patient. However, the purpose is very 
operational; the physician should determine (a) from which illness, if any, the patient is 
suffering, and (b) how to cure the patient. Similarly, in a factory, statistical information may 
be used for an operational decision whether to accept or reject a certain lot of manufactured 
products. 

There are also many examples of situations where non-statistical information is used for 
directive decision-making. For example, a politician, who is going to make a decision about 
how to distribute some government support to different parts of a country, will typically get a 
lot of statistical information as a basis for the decision. However, most politicians are also 
likely to be influenced by other types of information, like impressions from having been "on 
the spot", arguments from lobbyists, and even tactical considerations in view of coming 
elections. 

Thus information, which is of such a nature that we recognize it as statistical information, is 
typically used for knowledge-formation and decision-making of a nature that we have here 
labeled as "directive". In other words statistical information is one important type of directive 
information. 

We have also seen that statistical information can be a component in operative decision
making. However, most of the (operative) information used for operative decision-making is 
of a nature that we recognize as non-statistical. 
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What then is it in the nature of a piece of information that makes us recognize it as statistical 
information? This is a question of semantics, which will be addressed later in this paper. 
Before going there we shall look at some further properties of statistical information, which 
are connected with its usage. 

The activity or process where certain operative information is used is typically also the source 
of the information. Thus there is a short distance between the birth and usage of operative 
information. Moreover, the link between the source and usage of operative information is 
usually very direct and explicit: the information is collected for a very well defined need, and 
this need is both a necessary and sufficient reason for the information collection. Thus it is 
both desirable and feasible to tailor the definition of the information in accordance with the 
one and only need for it. 

As a contrast, the need for statistical information (as well as for other types of directive 
information) is much more negotiable. It is very seldom that a certain piece of statistical 
information, defined in exactly a certain way, can be claimed to be absolutely necessary for a 
certain purpose. In fact, directive decisions can be characterized by the fact that they need no 
information support at all in order to be taken; the decision-maker can always toss a coin, and 
whatever the outcome, the operations of the organization will probably continue to work, at 
least for some time. In the long run directive information is naturally expected to improve the 
performance of the operations, but the links between the information and its effects are much 
more complicated and less direct and obvious than in the case of operative information and 
decision-making. 

Operative information can be classified as "needed" or "not needed" with respect to a certain 
operation. Statistical information, on the other hand, can at best be attributed a certain value 
for the expected improvement of the quality of a certain decision or set of decisions. This 
value has to be balanced against the costs for the acquisition of the information, that is, the 
costs for observation, measurement, and processing that is necessary for making the 
information useful. 

Sometimes it is only through the pooling of several needs that the costs for the acquisition of 
statistical information can be justified. Such situations are called "multi-purpose", since the 
statistical information collected will be used for several purposes. The conceptual design of 
multi-purpose information is complicated, since the different information needs are not 
necessarily compatible. "Common denominators" must be found, and costs must be kept 
down. 

Because of the "multi-purpose" property of statistical information, and since the cost of 
producing certain statistical information will essentially be the same, regardless of how many 
times and by how many users that it is used, statistical information will often have the 
prerequisites for being - in a genuine sense - a so-called collective good. 

2 Semantical aspects of statistical information 

Semantics is a research area within informatics and computer science that is receiving 
growing attention. There are many different names for this subdiscipline: conceptual 
modelling, infological modelling, semantical modelling, and knowledge representation, to 
mention some of them. 
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Problems having to do with the contents and meaning of information have received a lot of 
attention in statistical organizations, even before computers were introduced. This is not 
surprising, because it is often more difficult, and at the same time more critical, to define the 
meaning of statistical information. Why? The answer has to do with what we discussed in the 
previous section, the usage and purpose of statistical information. 

The meaning of operative, non-statistical information is often very obvious and clear for its 
users. Most statistical products of statistical organization are multi-purpose to some extent, 
very often to a great extent. This is one reason for statistical organizations becoming 
interested in the semantical aspects of information even before the age of computers. For 
example, statistical organizations, both national and international, have a long tradition in 
developing standard definitions, classifications, nomenclatures, code lists, and registers, in 
order to improve the compatibility, comparability, and usefulness of statistical information. 

2.1 OPR/ER methodologies for conceptual modelling 

The semantics of information has to do with the relation between (a) the symbols and 
messages that constitute information, on the one hand, and (b) the reality and parts of reality 
that the symbols and messages refer to, on the other. Thus in order to develop a model of the 
meaning of a piece of information, we must be able to describe how the piece of information 
and its parts are related to the piece of reality that the information refers to. One type of 
conceptual framework, which has become rather popular for doing this is the so-called 
Entity-Relationship (ER) model. 

The Entity-Relationship model is often ascribed to Chen (1976). However, it is a fact that 
similar conceptual models, originated by several European authors, had been presented and 
used for at least a decade before the appearance of Chen's paper; for example, see Langefors 
(1966), Sundgren (1973, 1974), Durchholz and Richter (1974), Lindgreen (1974). The 
methodology used at Statistics Sweden was called the infological approach, or the Object-
Property-Relation (OPR) model, later extended to the Object-Property-Relation-Event-
Message (OPREM) model; see Malmborg (1982). 

Conceptual modelling according to OPR or ER approaches have not particularly emphasized 
the properties of statistical information. On the contrary most variations of these modelling 
methodologies have focused on the type of factual information about individual objects that is 
typical for operative or administrative information systems. This does not mean that OPR/ER 
approaches cannot be used for analyzing and modelling statistical information. However, 
there are still needs to refine some of the concepts to make these models even more suitable 
for coping with statistical information. We shall return to this topic. 

All OPR/ER methodologies for describing the semantical aspects of information are based on 
three fundamental concepts: objects (called "entities" in Chen's approach), properties, and 
relations (relationships). In some approaches a fourth concept, time, can also be regarded as 
fundamental. The methodologies assume that any piece of reality that is informed about by 
some collection of information can be conceptualized and modelled in terms of these basic 
concepts. 

Now we shall turn to the problem of how to extend OPR/ER methodologies in order to make 
them more suitable for handling statistical information. We shall start with the concept of 
statistical characteristic, or "statistical concept", which has a very central role in statistical 
theory. 

4 



2.2 Statistical characteristics 

A statistical characteristic (cf figure 2.1) is a property of a collective of objects in the 
object system. Furthermore, this property, or variable, of the collective of objects is a well-
defined function of one or more properties (variables) of the individual objects in the object 
collective. 

Thus a statistical characteristic can be formally described as a triple 

(2.1) 

where 

(i) O is an object collective, that is, a set of objects - often called a population; 

(ii) V is a vector of variables (often one single variable), each of which have values 
for the objects in O, usually one value per object and time value; 

(iii) f is a function, a so-called aggregation function (like frequency count, sum, 
average, correlation, variance, etc); the aggregation function is defined to 
provide the true value of the statistical characteristic, when it operates on the 
true values of the variables in V for the objects in O. 

Note. O.V.f is a useful dot notation for the triple <0, V, f>. The dot notation is used in a 
language called INFOL for describing and manipulating statistical information. For a formal 
definition of INFOL, see appendix. 

2.3 Statistical information and statistical data 

The term "statistics" usually denotes macrodata only, that is, "estimated values of statistical 
characteristics", whereas "statistical data" often denotes both macrodata and the microdata, 
which are used as input to the aggregation process producing the macrodata. 

Statistical data are representations of statistical messages, which inform about estimated 
statistical characteristics and underlying observations of object characteristics. Macrodata are 
representations of statistics messages, or s-messages. Microdata are representations of 
observation messages, o-messages. 

An s-message must somehow provide 

(i) a reference to an object collective, O(t0), which is well-defined in time and 
space; 

(ii) a reference to a vector of variables, V = <V(ti),..., V(tn)>, which have well-
defined but usually unknown values for the objects in the object collective at 
certain specified points or intervals of time, ti,..., tn, respectively; 

(iii) a reference to an aggregation function, f, which is well-defined for V; 

(iv) a value, c', which is the estimated value of the statistical characteristic 
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Figure 2.1. Illustration of some fundamental concepts in statistical information processing. 
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(2.2) 

Note. An estimated value c' of a statistical characteristic C will typically be different from 
the true value c. The discrepancy is due to errors and uncertainties of different kinds. 

An o-message must somehow provide 

(i) a reference to an object collective, O(to), which is well-defined in time and 
space, and to which the observed object belongs; the observed object may be 
identified or anonymous; 

(ii) a reference to a vector of variables, V = <V(ti),..., V(tn)>, the observed 
variables, which are supposed to have well-defined true values for the objects in 
the object collective at the specified points or intervals of time, t\,..., tn, 
respectively; 

(iii) a vector of values, v' = <v'i,..., v'n>,which are the observed values of V; 
naturally the observed values may be different from the corresponding true 
values v = <v\,..., vn>. 

2.4 Structured sets of statistical characteristics and statistical data 

Statistical data, particularly macrodata, are often organized in certain typical structures. 
Thus, for example, statistics users are often interested to obtain estimated values of "the same" 
statistical characteristic for 

• a series of time periods (rather than a single one) -
"time series data"; and/or 

• a structured set of object collectives (rather than a single one) -
"structured cross-section data". 

Time series data may be indicated as such by using a time parameter as part of the names of 
the object collectives and variables, which are part of the statistical characteristic. For 
example, data labeled something like "average income for persons 1991,1992, and 1993" may 
be formally described in the following way: 

(2.3) 

where 

The collective of objects, or population, referred to in the definition of a statistical 
characteristic, is often subdivided into sub-collectives, sometimes called domains of interest. 
Such a structured set of related object collectives may be called a structured population. The 
structuring is often accomplished by means of crossclassification, using the Cartesian product 
of the value sets of a number of variables. For example, a structured population labeled 
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(2.4a) "persons by occupation, age_group, and sex 1991" 

may be formally described as: 

(2.4b) PERSON(1991)Qiy_occupation(1991) * age_group(1991) * sex(1991)); 

If we combine the structuring mechanisms of (2.2) and (2.3) we get a rather complex time 
series of cross-classified cross-sectional data. For example, a set of statistical data labeled 

(2.5a) "average income for persons by occupation, age_group, and sex 1991,1992, 
and 1993" 

may be formally described as 

(2.5b) PERSON(tp)G)y. occupation(tp) * age_group(tp) * sex(tp)).income(ti)average; 

where 

(i) tp = 1991-01-01,1992-01-01, 1993-01-01; 
(ii) ti = the year starting at tp 

A generalization of this format for specifying structured sets of statistical characteristics and 
statistical data is the following box structure format, used in the INFOL language: 

(2.6) 

where 

(i) <object type> denotes a time-independent object collective, which is made 
time-dependent by means of the qualifier (t0), which may be either a parameter 
(in the case of a time series) or a constant; 

(ii) the optional clause [(with <property>)] indicates a selection of a subset of 
<object type>(t0) by means of <property>, which may be expressed in terms of 
variables variables, which are defined and relevant for the objects in the object 
collective; 

(iii) the two clauses described in (i) and (ii) form a part of the box structure, which is 
sometimes referred to as the alfa part; 

(iv) the value sets of the so-called gamma variables, vgi(tgi),..., vgn(tgn), 
crossclassify the time-dependent object collective; 

(v) the gamma variables are time-qualified, and any one of the qualifiers may be 
either a parameter (time series case) or a constant; 

(vi) the variables vbi(tbi),..., vbm(tbm) are the so-called beta variables, which are 
also time-qualified (by means of parameters and/or constants), and the values of 
which are aggregated by means of aggregation functions 
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Note 1. In practice, many of the time parameters (time constants) occurring in a box structure 
expression are actually the same, and then they may be separately specified in a special time 
clause, sometimes referred to as the tau part. 

Note 2. Box structures following the format given above are sometimes referred to as alfa-
beta-gamma-tau-structures. 

2.5 Object classifications and generic hierarchies 

In the original versions of OPR/ER methodologies there were only the two levels of 
abstraction that result from the instance/type distinction principle. Over the years, starting 
with Smith & Smith (1977), several additional levels and dimensions of abstraction have been 
identified, which facilitate a semantically richer analysis and modelling of information. 

We have seen that the instance/type abstraction applied to objects is essentially a classification 
of object instances into object types. There is no reason why a classification process could not 
be repeated in such a way that we get an n-level classification hierarchy. Such classification 
hierarchies are alternatively called generalization/specialization hierarchies or generic 
hierarchies. For example, the object type PERSON may be specialized into the subtypes 
MALE_PERSON and FEMALE_PERSON, and the object types BIKE, CAR, and BUS may 
be generalized into the supertype VEHICLE. 

In generic hierarchies, variables are inherited from supertypes to subtypes, and so are 
properties, which are common for all objects in a supertype. Thus all variables, which are 
relevant for the object type PERSON, will also be relevant for the subtypes MALE_PERSON 
and FEMALE_PERSON, and all instances of both subtypes will automatically inherit all 
properties which are common for all instances of the PERSON supertype, like "having two 
eyes". On the other hand, the subtype will have certain variables and properties, which 
distinguish them from other subtypes on the same level in the generic hierarchy. For example, 
MALE_PERSON may have a variable "military service done?" and FEMALE_PERSON may 
have a variable "number of pregnancies". Furthermore MALE_PERSON will have the unique 
common property sex="male", whereas FEMALE_PERSON will have the unique common 
property sex= "female"; this implies also that "sex" is a variable (of the supertype), which 
serves as a classification key for the classification into subtypes. 

A generic hierarchy may be graphically visualized as in figure 2.2, which also contains the 
relevant definitions expressed in the INFOL language. 

In statistical surveys object classifications and generic hierarchies occur in several forms and 
for different purposes. For example, within a certain population different subsets of objects, 
called domains of interest, or domains of study, are usually specified. The subsets may be 
specified one by one (cf INFOL expressions on the form "<object type referenco with 
<property referenco") or as a crossclassification by means of a Cartesian product of variables 
(cf INFOL expressions on the form "<object type referenco by <variable referenco", where 
the variable reference may be an expression evaluating to a Cartesian product of variables. 
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Examples: 

single subset: PERSON with citizenship = "foreign"; 

crossclassification: PERSON by age_group x sex; 

Subsets of populations are also specified for stratification purposes. Although the purpose is 
different, the specification of a stratum can formally be expressed in exactly the same ways as 
specifications of domains of interests. 

Figure 2.2. Graphical illustration (with accompanying INFOL definitions of the classification 
hierarchy "persons_by_sex"). 
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2.6 Abstraction by statistical aggregation 

It should be noted that there is only one basic collection of object instances which is classified 
in a classification hierarchy. This abstraction mechnism should be carefully distinguished 
from another one, which is very typical for statistical information: the statistical aggregation 
hierarchy. (Unfortunately there is again another type of aggregation, which has nothing to do 
with the statistical concept of aggregation; see Smith & Smith (1977).) 

The meaning of statistical aggregation can be described in two steps. The first step is an object 
classification of any of the types described in the previous section (including the special cases 
of subtyping and crossclassification). 

In the second step of statistical aggregation the instance/type distinction is "moved one level" 
with respect to the objects and object classes in the object classification hierarchy defined by 
the first step. This creates "a higher level of abstraction", where the object classes (types, 
subtypes, and supertypes) in the classification hierarchy will now be regarded as object 
instances rather than as object types. These "collective object instances" will be called 
aggregated object instances, and the corresponding "collective object type" will be called an 
aggregated object type. 

As an example we may consider the classification hierarchy "persons_by_sex" in the previous 
section. The individual persons are the object instances in this classification hierarchy, and the 
object classes (populations and domains of interest) "PERSON", "MALE_PERSON" and 
"FEMALE_PERSON" are the object types, making up a supertype/subtype hierarchy. 
Applying the statistical aggregation abstraction mechanism to this hierarchy implies a change 
of perspective, so that the object classes are no longer looked upon as object types (only), but 
(also) as object instances on a higher level of abstraction. The object type for these collective 
instances could be called (in this example) PERSON_GROUP. This object type has three 
instances according to our definitions: 

PERSON_GROUP = {PERSON, MALE_PERSON, FEMALE_PERSON} ; 
= {PERSON by sex}; 
= (PERSON by sex).agg; 

The two last lines above illustrate two alternative INFOL formalisms for expressing 
derivation of object types by statistical aggregation; one uses the set brackets, {...}, and the 
other one an operator, agg, to indicate the aggregation abstraction. 

Like other objects the object instances of PERSON_GROUP may have properties, and these 
properties may be expressed in terms of variables for PERSON_GROUP. The properties and 
variables of aggregated objects are very often derivable by some type of aggregation process 
(frequency counting, summarization, computing of averages, percentages, variances, 
correlations, etc) from properties and variables of the object instances on the next lower 
aggregation level. 

Thus aggregation of object types and aggregation of variables often go hand in hand. This is 
also reflected in the INFOL formalism. Instead of writing 

(PERSON by category).agg.count (or, equivalently, {PERSON by category}.count); 

it is possible to write 
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(PERSON by category).count; 

In the latter writing an operator like count (or sum, avg, etc), which aggregates the values of 
a variable for a (possibly classified) set of objects, implies a preceding object aggregation, as 
expressed by agg or {...}. 

As an example of statistical aggregation we may again consider a group of persons that is 
classified according to their sex into males and females. As long as we do only this, it is a 
pure classification hierarchy. As we have seen, the classification can be used for structuring 
the information into subsets, which are homogeneous with respect to relevant variables and 
common properties. 

However, we may also start to derive properties of the sexgroups as such, for example by 
simply counting or estimating the number of persons belonging to each group, or by 
computing or estimating the average income for each group on the basis of the incomes of (a 
sample of) the respective person instances. On the lowest abstraction level (aggregation level) 
the object instances will be persons having incomes. On the next level there will be only two 
instances: "males" and "females" having their respective cardinalities and average incomes as 
properties. 

An aggregation hierarchy may be graphically visualized as in figure 2.3. The figure also gives 
some example of the INFOL syntax by showing the definitions for the derivable concepts in 
the figure. 

Abstraction by means of aggregation is one of the most typical semantical features of 
statistical information. The prefixes micro- and macro- are often used to distinguish between 
statistical information before and after aggregation. 

In many statistical information systems the input information consists of unaggregated 
microinformation, whereas the output information consists of aggregated macroinformation. 
However, this is a rule with exceptions. For example, if a national statistical office collects 
economical information from companies, this information is microinformation for the survey 
processing in the statistical office, but for each one of the companies contributing to the 
survey, the contributed information is likely to be aggregated from numerous economical 
transactions inside the company. 

Thus the micro/macro distinction is relative rather than absolute. If microlevel objects are 
classified and abstracted into macrolevel objects, these object can again be regarded as micro-
objects and be subject to classification and abstraction into macroobjects on a yet higher level 
of abstraction. A special case is if the original classification is a hierarchical classification 
consisting of more than two levels. An example of statistical aggregation based on a 
multilevel classfication hierarchy is shown in figure 2.4. The figure also shows how such a 
multilevel object aggregation hierarchy can be graphically represented in a more compact 
way. 
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Figure 2.3. Graphical illustration of an aggregation hierarchy; with INFOL definition 
expressions. 

2.7 Value aggregation and hierarchical variables 

As illustrated by the last example above, multilevel object aggregation often goes hand in 
hand with hierarchical variables like region = county#:municipality#. A hierarchical 
variable is a variable with a hierarchically structured value set, and a hierarchically 
structured value set is a value set, which can be seen as the result of a value aggregation 
process similary to the object aggregation process described in the previous section. 

Object aggregation starts with the set of object instances of an object type. Value aggregation 
analogously starts with the set of values of a value type. The values are classified into subsets 
of the value set, and each one of these subset is then, after abstraction, regarded as a value "on 
a higher level". The higher level values are thus defined as an aggregation (= classification + 
abstraction) of the lower level values. 
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Figure 2.4. A multilevel object aggregation hierarchy. 
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For example, suppose that we start with a value type having the value set 

V = {1 ,2 ,3 ,4 ,5 ,6}; 

and that this value set is classified in the following way: 

A={1,2 ,3} ;B = {4};C = {5,6}; 

Now we may abstract the subsets A, B, and C into higher level values of a higher level value 
set 

W = {A,B,C}; 

which we may write 

W={A{1,2,3},B{4},C{5,6}}; 

in order to indicate the definitions of the higher lever values in terms of the lower level 
values. By taking the union of V and W we finally get a complete, hierarchically structured 
value set of two levels: 

U = {A{ 1, 2, 3}, 1, 2, 3, B{4}, 4, C{5, 6}, 5, 6}; 

We can see that each reference to a higher level value includes the definition of the value in 
terms of the lower level values. Thus the specification of the new, hierarchical value set 
includes both the values and the structure between the values. However, the naming 
convention used here is not very practical. A more practical way of referring to the values, 
which still retains the structure visible, would be the following one: 

U = {A, A:l, A:2, A:3, B, B:4, C, C:5, C:6}; 

The lower level values are referred to by a "family name", indicating the "parent value" on the 
next higher level in the hierarchy, and a "first name", indicating the "member of the family". 
An even more common practice is to rename the low level values, using the fact that the "first 
names" need be unique only "within the family": 

U = {A, A:l, A:2, A:3, B, B:l, C, C:l, C:2}; 

Now we have finally arrived at the typical pattern for naming values in hierarchical value sets. 
It is also customary to give a name to a hierarchical value set that indicates the hierarchical 
structure by having a name component for each level in the hierarchy. Example: 

region = county : municipality; 

Like in this example, the hierarchically structured name need not be the only name of the 
value set. Note also that the naming conventions just described actually imply some 
ambiguity. In the just given example, it is easy to conclude that a region value name consists 
of two parts: a county value name, and a municipality value name. However, this is in a way 
both true and not true. As described above, the municipality name would consist of two parts: 
a "family name", and a "first name". The family name of a municipality value is actually the 
same as the (complete) name of a county value. Thus the complete municipality value name 
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consists of a complete county value name together with the first name of the municipality; the 
latter is only unique "within the family". If we call the complete name of a hierarchical value 
"the long name", and the first name part "the short name", we get: 

region value name = county value name : short municipality value name; 

long municipality value name = county value name : short municipality name; 

However, in practice the term "municipality value name" would often be used ambiguously to 
denote both the long and the short municipality name. To make it even more concrete: if 
"region code" consisted of four digits, where the first two digits would identify a county, and 
the last two would identify a municipality within a given county, the last two digits would 
probably often be referred to as "the municipality code", although it would only be the short 
name part of the complete municipality code. This ambiguity is a source of some confusion 
when discussing hierarchical variables and hierarchically structured value sets. 

The discussion here about two-level hierarchical variables and value sets can easily be 
generalized to n levels. 

2.8 Sampling and estimation 

Beside aggregation, sampling is a typical process in many statistical information systems, as 
well as "the twin process" of estimation based on sampled information. How can we model 
the semantics of sampled statistical information and of the processes of sampling and 
estimation? Figure 2.5 illustrates one possible way of tackling these problems, using some of 
the extensions to ordinary OPR modelling that have been introduced in this paper. 

The example used in figure 2.4 is a hypothetical sample survey, where the population is a set 
of object instances belonging to the object type PERSON. We know the values of some 
variables for all the instances in the population: person#, region, and category. Population 
characteristics (parameters) that are functions of these variables can be estimated (computed) 
by evaluting the function over the object instances in the population. On the other hand 
income is a variable which is assumed to be relevant but not known for the object instances of 
the PERSON population. Instead it should be estimated after observing a sample of PERSON 
objects. The sample is supposed to be taken on the basis of random sampling from subsets of 
the population formed by stratification. Every object instance within a certain stratum has 
equal selection probability n/N, where n is the number of instances to be selected from the 
stratum, and N is the total number of instances in the stratum; n/N varies between strata. 

The OPR-model for the sample survey contains two object types corresponding to the 
(generic) object type PERSON: PERSON_IN_POPULATION and PERSON_IN_SAMPLE; 
there is a partial one-to-one relation between the two object types. The two other object types 
in the model, STRATUM and PERSON_GROUP_OF_INTEREST, are formed by statistical 
aggregation of (any one of) the PERSON object types. The formal definitions, expressed in 
INFOL, can be found in the text under the object graph. The meaning of the object type 
STRATUM is obvious from the name. The object type PERSON_GROUP_OF_INTEREST is 
an object type, whose instances are domains of interest or domains of study in the sense of 
Marriott (1990), that is, subgroups of the population (including the population as a whole) 
which are of particular interest for the users of the statistical results derived from the survey. 
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Figure 4. An object graph - with accompanying INFOL definitions - corresponding to a 
sample survey. 
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Many of the variables for the object types are derivable from other variables; once again the 
definitions are stated in INFOL below the object graph. Variables for which data are not 
available (like income for PERSON_IN_POPULATION) are indicated by a small ring (°) 
after the variable name. 

3 Major functions of a statistical information system 

A statistical information system accomplishes its tasks by performing three major functions: 

(Fl) an input acquisition function, which directly and/or indirectly observes 
(measures) certain object system characteristics, and which prepares and 
stores the information thus obtained in the form of data, so-called microdata; 

(F2) an aggregation function, which transforms the microdata produced by the input 
acquisition function into macrodata, or "statistics", which are estimated 
values of statistical characteristics. 

(F3) an output delivery function, which makes macrodata (statistics) available to the 
users, and which assists the users to interpret and analyze the data further. 

Figure 3.1 illustrates a model of a statistical information system, which contains the three 
major functions. Figure 3.2 illustrates the result of a deeper functional analysis. The statistical 
information system in figure 3.1 is assumed to be database-oriented and self-describing. In a 
database-oriented statistical information system, the microdata and macrodata, which are 
stored and processed by the three major functions (input acquisition, aggregation, output 
delivery), are communicated within and between the functions via a database. In a self-
describing statistical information system, the microdata and macrodata are described by 
means of accompanying metadata, which are stored in the database, and which are 
consistently transformed, whenever the described data are transformed. 

A simple example of a statistical information system is a "traditional" statistical survey. 
Another type of statistical information system, which statistical offices are now paying much 
attention to, are retrieval systems. A statistical survey is focusing on a certain data collection 
process, resulting in a certain collection of microdata, which are aggregated into estimated 
values of certain statistical characteristics. In contrast, a retrieval system focuses on the needs 
of a particular category of statistics users, and aims at making available macrodata and 
microdata from different surveys (and other sources), which may be relevant for the particular 
category of users. 

In addition to statistical surveys and retrieval systems, there are other types of statistical 
information systems of a more auxiliary nature. One example is registers (cf figure 3.1). 
There are two kinds of registers, which are particularly important for statistical information 
systems: base registers and code registers. A base register establishes and maintains an 
authorized list of the objects belonging to a certain population. A code register establishes and 
maintains an authorized list of the values belonging to the value set of a certain variable or 
classification. 

A complex statistical information system may contain many statistical surveys, retrieval 
systems, registers, etc, as subsystems. "The statistical information system of a country" is an 
example of such a complex statistical information system. 
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Figure 3.1. A model of a self-describing database-oriented statistical information system. 
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Figure 3.2. A functionally oriented model of a statistical information system 
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4 Systems of statistical information systems 

4.1 Needs for communication and integration in statistical infrastructures 

A certain statistical information system typically has needs to interact in different ways with 
other information systems - statistical as well as non-statistical. For example, the vast majority 
of input data (more than 95% by volume) to official statistical systems in Sweden are outputs 
from administrative information systems like taxation registers. Statistical information 
systems, which fall into the categories of "secondary statistics production" (example: systems 
of national accounts) and "user-driven retrieval systems" (cf figure 4.1) obtain input data from 
many other statistical information systems. Moreover, there is a growing international 
exchange of statistical data. 

Figure 4.1 gives an overview of the system of statistical information systems of a statistical 
office. The individual statistical information systems of such a system of systems belong to 
some typical categories like 

• systems for primary statistics production (the traditional type of statistical surveys); 
• instrumental systems like registers consisting of base registers and code registers; 
• systems for secondary statistics production like the system of national accounts; 
• retrieval systems like user-driven search systems and presentation databases. 

Thus there is a need to consider the design of more or less complex systems of statistical 
information systems - statistical infrastructures. Actually a statistical infrastructure of some 
sort is usually present (explicitly or implicitly) in most organizations. For example, in a 
company the accounting system is likely to be an important part of the statistical 
infrastructure. The central statistical office of a country has the specialized task of providing a 
good statistical infrastructure for a large variety of needs of the citizens, organizations, 
companies, and rulers of the country. Analogously, international communities have important 
needs for statistical infrastructures covering many countries. 

In particular there is a need to consider communication and integration within and between 
systems of statistical information systems (and other types of information systems). 

Integration of statistical information systems can be accomplished in different ways. The 
traditional way is physical integration, whereby the data and processes of several more or 
less autonomous statistical information systems are brought together into one physically (and 
logically) integrated system, which is under the full centralized control of one management. 

Physical integration of statistical information systems is associated with many problems of 
physical, logical, and organizational nature. Among other things physical integration will 
easily lead to a lot of duplication and redundancy, which in turn will cause complex and error-
prone update procedures. For example, suppose that there are three (groups of) users, and that 
each one of the users need statistical information from a subset of a set of 15 different 
statistical information systems, as illustrated by figure 4.2a. If we create three physically 
integrated information systems, corresponding to the needs of the three users, respectively, 
many of the 15 original systems will be duplicated. 
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Figure 4.1. The statistical information system of a statistical office. 
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An alternative to physical integration is some kind of soft integration, where the original 
information systems remain as autonomous systems, constrained only by some requirements 
to be able to exchange information between themselves. The communication requirements in 
such a system of loosely coupled systems may be decided upon globally (as the result of 
dictates or negotiations) or agreed upon after separate negotiations carried out between each 
user and the manager of each information system from which the respective user is interested 
to obtain statistical information. In its genuine form the latter model will be very complex and 
resource-consuming. For example, in a real situation corresponding to figure 4.2a there would 
have to be 28 different negotiation processes, resulting in 28 individual agreements between a 
user and the manager of an information system. Johannesson (1993) describes the 
complexities of "schema integration for heterogenous federated data bases" 

Figure 4.2b illustrates a model for soft integration, which avoids the problems of completely 
decentralized negotiation processes by introducing a very small amount of centralized control 
in the form of a standardized interface for exchange of information: every user and every 
information system should be able to communicate with the standardized interface, but every 
user/producer autonomously determines how this requirement should be fulfilled. In the 
terminology of Özsu (1990) our approach is somewhere in between distributed databases 
and federated databases. The semantics of the interchange format gives a certain amount of 
harmonization, without imposing the constraints of a distributed database architecture. 

In the situation illustrated by figure 4.2b, there is a need to design (15 + 3) = 18 
communication procedures, each one of which can be autonomously decided upon by a single 
user/producer without any negotiation and with the only restriction that it should be 
compatible with the standard interface. This should be compared with the situation in figure 
4.2a, where there is a need to design 28 communication procedures, each one of which must 
be negotiated by a user/producer couple. 

More generally, if we assume that there are m users and n producers of information, 
Communication Model 1 (CM1), corresponding to a generalized version of figure 4.2a, will 
require in the order of (m x n) communication procedures to be designed and bilaterally 
agreed upon after the same number of negotiations, whereas Communication Model 2 (CM2), 
corresponding to a generalized version of figure 4.2b, will require in the order of (m + n) 
communication procedures to be designed and unilaterally decided upon by each 
user/producer. 

Furthermore, if a new user (producer) is added to the scheme, CM1 will require up to n (m) 
new communication procedures to be designed and bilaterally negotiated, whereas CM2 will 
require only 1(1) new communication procedure to be designed and unilaterally decided 
upon. 

Thus systems of statistical information systems (and systems of such systems) can be (more or 
less) open or (more or less) closed. A statistical office, controlled by one management, could 
- at least in theory - design its internal systems for production of statistics as a relatively 
closed system of physically integrated statistical information systems. Most component 
systems of such a system will be very dependent on the behaviour of other systems. Thus a 
change in one system may easily trigger of a chain of (necessary) changes in other systems, 
and the introduction of a new system into the system of systems will often cause complex 
integration problems. 
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Figure 4.2a. One way of organizing the interaction between two sets of systems. 

Figure 4.2b. A model for "soft integration" based upon loosely coupled systems 
communicating via standarized interfaces. 
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In a more loosely controlled environment, like an international community of souvereign 
member states, a closed system of statistical information systems is hardly even theoretically 
conceivable; an open system of cooperating system is the only practical possibility. 

4.2 Interface levels 

Three major interface levels can be identified within and between statistical information 
systems (cf figure 4.1): 

Level 1: Interfaces between a statistical information system (or a system of such systems) 
and external users/producers of statistical information: external interfaces. 

Level 2: Interfaces between subsystems of statistical information systems: intra-system 
interfaces or internal interfaces. 

Level 3: Interfaces between statistical information systems (or systems of such systems): 
inter-system interfaces or interfaces between systems. 

4.2.1 External interfaces 

A statistical information system exchanges information with 

(a) statistics users; 
(b) input providers (respondents and/or intermediaries like interviewers or 

administrative systems). 

Input-oriented external interfaces 

The input providers provide information about observations and measurements of a number 
of object characteristics (states and events) for a number of individual objects in the object 
system. According to the discussion in section 2 of this paper, an object characteristic can be 
formally represented as an orderd pair 

(4.1) C0 = <0, V> or, with dot notation, C0 = O.V 

where O is an object type and V is a variable. Sometimes O will rather be a vector of object 
types, in which case V will be a relation or a variable that is based upon a relation, e g 
"quantity (of a commodity) exported (from one country to another country)". 

The basic building-blocks of information about observations and measurements of object 
characteristics are so-called (micro)object level elementary messages (e-messages) with the 
semantical structure 

(4.2) m0 = <Oi, p, t> or, with an alternative notation, m0 = [oj.V(t) = VJ] 

where 0[ is an object instance belonging to the object type O, p is a property, typically 
expressed as a value a; of a variable V, and t is an instance of time (point or interval) at/during 
which the object is supposed to have (had) the property p. Alternatively 0[ could be a vector 
of objects, p being a relation (like "married") or a <V, v p pair, where V is based upon a 
relation (like in the "export" example above). 
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In a typical interaction between a statistical information system and an input provider, the 
latter receives a set of questions, often hierarchically structured by respondent. The 
respondent is sometimes identical with (one of) the object(s) observed. The questions are 
accompanied by some metainformation (explanations, instructions, etc). In some systems 
additional metainformation may be requested interactively by the respondent, if and when it is 
needed. When observation messages are returned to the statistical information system, they 
may be accompanied by other types of metainformation, informing about, say, some 
exceptional circumstances noted in connection with the observation process. 

When the hierarchically structured sets of observation messages enter the statistical 
information system, they are often - sooner or later - transformed into flat files or relational 
tables in accordance with relatively well standardized procedures, supported by many 
commercial software products (cf form handling tools of relational database management 
systems). The accompanying metainformation should ideally be systematically taken care of 
by a parallel process, but this part of the external interface on the input side has not yet 
reached any degree of standardization. 

Output-oriented external interfaces 

On the output side the external interface traditionally consists of statistical tables accompanied 
by metainformation in the form of headings, column and row labels, footnotes, comments, 
etc. Today electronical equivalents of statistical tables are at least equally important, and such 
outputs are often the result of interactions, which are initiated by a user, and which involve the 
processing of metadata provided alternately by the user (search questions etc) and by the 
statistical information system. 

The basic building-blocks and typical semantical structures of the aggregated statistical 
information contained in statistical tables were discussed in section 2. As was noted there, 
statistics users are often interested to obtain estimated values of "the same" statistical 
characteristic for 

• a series of time periods (rather than a signle one) - "time series data"; and/or 
• a sturctured set of object populations (rather than a single one) - "cross-sectional data". 

The GESMES format is a proposed international standard for representation of statistical 
macroinformation and accompanying metainformation. "GESMES" stands for "Generic 
Statistical Message", and the standard proposal is developed by the UN/EDIFACT Message 
Development Group 6.1. 

Observation registers, containing observed and/or derived microdata, are - beside collections 
of statistics/macrodata - the other important type of information output from statistical 
surveys. More and more competent users of statistics demand access to microdata, for their 
own analyses, in their own computer environments. Statistical offices are responding to such 
demands by preparing files of anonymized microdata, for example so-called public files. 

An external user who is about to (re)use the microdata in an observation register may not be 
in a position where he or she has access to the staff in the statistical office, who once (maybe 
years earlier) produced the data. Thus the observation register will have to be accompanied by 
an appropriate documentation, that is, a set of metadata. 
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4.2.2 Internal interfaces 

Figure 4.3 illustrates the typical structure of one single statistical information system, 
corresponding to one statistical survey, in a statistical office. A database-oriented architecture 
is assumed with three major types of subsystems exhanging data and metadata with a common 
statistical database. The subsystem types are labeled 

• input acquisition; 
• aggregation; 
• output delivery. 

In a database-oriented statistical information system most exchange of data takes place via one 
or more databases. Thus the most important internal interfaces in such systems are the 
interfaces between the data base management software and the various software products, 
which are used for performing the basic functions in a statistical information system (cf figure 
4.4). Today the most widely accepted, relevant standard for this type of interface is the 
Structured Query Language (SQL). 

It should be noted that SQL does not contain a standard for the exchange of semantically 
oriented metadata accompanying the data. In the future there may be more complete general 
(and commercially supported) standards for the exchange of data/metadata between databases 
and application functions, possibly based upon object-oriented data models rather than 
relational ones. 

4.2.3 Inter-system interfaces 

As long as we are within a system of statistical information systems, which is - at least in 
principle - controlled by one single management, this management has certain possibilities to 
impose standards for internal properties of the interdependent systems and subsystems as well 
as for interfaces between them. When we consider systems, which - like the statistical system 
of the European Communities, EC - are not controlled by a single management, imposing 
standards for internal properties will be virtually impossible, and the necessary negotiation 
processes for reaching agreements on standards for information exchange between the 
different member systems. Very open system design principles become a necessity in such 
situations. 

As an example we may consider the model of a proposed Distributed Statistical Information 
System (DSIS) developed in a study initiated by the Commission of the EC. A key element in 
this model is the setting up of a European reference environment, which is illustrated on a 
conceptual level in figure 4.5. Each set of three boxes represents a DSIS organization and the 
production (P), reference (R), and dissemination (D) environments within those organizations. 
The shaded portions of the reference environments are those accessible across the DSIS 
network, and these comprise the European reference environment. 
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Figure 4.3. A model of a self-describing database-oriented statistical information system. 

Figure 4.4. A functionally oriented model of a statistical information system. 
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Figure 4.5. A loosely coupled system of statistical information system: the European reference 
environment. 

29 



5 Syntactical properties of statistical information 

5.1 Input-oriented structures of statistical data: questionnaires and forms 

A questionnaire or form for eliciting statistical data from an informant (respondent) has often 
a hierarchical structure. The root node in the hierarchy corresponds to an object, which is 
either the respondent or an object that the respondent can inform about. The other non-leaf 
nodes in the hierarchy usually correspond to objects that are dependent upon the root-node 
object. The leaf nodes, finally, are the individual questions (or groups of questions) of the 
questionnaire, and they correspond to variables (or groups of variables) of the objects in the 
non-leaf nodes. 

Like many other types of hierarchical structures, the structure of a questionnaire can be 
described by means of a structure diagram, containing the three structure elements known 
from structured programming: sequence, selection, and iteration (repetition); see for example 
Dahl, Dijkstra, and Hoare (1972) and Jackson (1975). 

Figure 5.1 illustrates the structure diagram technique applied to an imaginary questionnaire 
concerning a person's educational background. The diagram should be read as follows. The 
data collected by the questionnaire consists of four major parts, corresponding to four major 
sets of questions: first the person is asked for some background information (name, 
date_of_birth, sex etc), then there are some questions about the basic education that every 
person is supposed to have, then those people who have undergone some vocational training 
are asked to supply some information about this, and finally those who have completed one or 
more programmes of higher education are asked to supply some details about these. Thus 
there are two mandatory and two optional parts of the questionnaire. A small ring or zero in 
the upper right part of a box indicates an optional part that will apply once, if it applies at all; 
an asterisk in the same position indicates an optional part that may be repeated. In this 
particular questionnaire, the respondent is assumed to have zero or one vocational trainings to 
inform about, where as the number of higher educations may be zero, one or more. If we look 
at the details of the main parts of the questionnaire, we can see, for example, that both a basic 
school education and a higher education programme are supposed to consist of a (variable) 
number of education component, where each component consists of a subject (course) and an 
optional judgement (score). 

The questionnaire in this example, like many a real-world statistical questionnaire, has a 
rather complex structure. Nevertheless, it can relatively easily be mapped into the typical flat 
file structure of a relational database. (As a matter of fact, any state-of-the-art relational 
database management system would supply a forms-oriented user interface, where the user 
could define a hierarchical questionnaire like the one in the example, and have the data in it 
automatically mapped into a specified relational structure.) 

One way of designing the mapping between a statistical questionnaire and a relational 
database is to proceed in the following three steps: 

Step 1. Model the hierarchical structure of the questionnaire using the diagram technique in 
figure 5 or some equivalent formalism (for example the PASCAL-based methodology used in 
the Dutch system BLAISE; see Bethlehem et al (1987). 
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Step 2. Develop the OPR-model underlying the questionnaire, unless it already exists; it is 
always possible to find a conceptual OPR-model, which will make it possible to define the 
hierarchical questionnaire structure as a view, or external schema, in database terminology. 

Step 3. Transform the OPR-model into a relational data model. This can always be done by 
applying some simple transformation rules; See Sundgren (1984) and Elmasri and Navathe 
(1989). 

Figure 5.1 illustrated the result of step 1 for a simple example. Figures 5.2 and 5.3 illustrate 
the results of step 2 and 3 for the same example. 

Figure 5.1. Structure diagram illustrating the typical, hierarchical structure of a statistical 
questionnaire. (The diagram technique follows Jackson (1975), but some conventions have 
been adopted, which make the diagram more compact.) 
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Figure 5.2. An object graph showing the OPR-model underlying the hierarchical structure of 
the statistical questionnaire in figur 5. 
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Figure 5.3. A relational data model corresponding to the conceptual OPR-model in figure 6 
and the questionnaire in figure 5.1. 

5.2 Output-oriented structures of statistical data: statistical tables 

There are several techniques, known from the literature, for describing the semantical and 
syntactical structure of statistical tables; see for example Shoshani (1982) and Sato (1988). 
One problem is to which extent semantical and syntactical aspects of the table structure should 
be treated separately, and to which extent they should be mixed together. From a purely 
syntactical point of view, the most fundamental structure is the two dimensions of the paper or 
screen upon which the table is usually presented. On the other hand, from a purely semantical 
point of view, the basic structure is determined by (a) the principal logical parts of the 
definition of the information contents of a table, and (b) the components of each one of these 
logical parts. 

In my opinion it is unnecessarily complex to describe and understand the syntactical structure 
of a statistical table, without having first a good semantical analysis of the table. 

A statistical table is a structured representation of a structured set of statistical messages. Let 
us consider a cell in a typical statistical table. It usually contains a number, and it is further 
characterized by its place in the table structure, together with the textual information 
associated with this place (head and stub texts etc). The data and the associated metadata of a 
cell in a table represents a piece of statistical information that we can call a statistical e-
message. 

The object part of a statistical e-message refers an object group, which is a population of 
objects of interest, or a subset of such a population, a so-called domain of interest, or domain 
of study. The object group is a macro-object resulting from an abstraction by aggregation. 
Thus the macro-level object can be defined in terms of a micro-level object type and a 
property giving a restriction to a subtype: 

<object type> with <property>; 

Example: 

PERSON with sex="female" and age<20; 

The property part of a statistical e-message typically refers to a <variable, value>-pair, where 
the variable is a so-called parameter or characteristic of the domain of interest referred to by 
the object part of the message, and where the value is the value referred to by the number in 
the table cell. Example: 

estimated_average_income = 15000; 

The time part of a statistical e-message can be a point of time (if the e-message informs about 
a state in the domain of interest) or a time interval (if the e-message informs about a change in 
the domain of interest. The time part is often the same for all the statistical e-messages in a 
table, and then it can be mentioned in the table head only. However, if the table contains 
statistical information that is organized as one or more time series, common time parts for 
subcollections of e-messages (cells) may appear in column heads or in the stub. 
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Thus an example of a complete statistical e-message could be: 

<PERSON with sex="f" and age<20, est_avg_income= 15000, year=1990>; 

In the syntax of INFOL this could be expressed as: 

{PERSON(with sex="f" and age<20)}.est_avg_income(year= 1990)=15000; 

In the introduction to this section we defined a statistical table as a structured representation of 
a structured set of statistical messages. Many tables appearing in statistical presentations have 
a very regular structure, at least from a semantical point of view. In fact it could be argued 
that even tables, which are not quite so regular, could and should be thought of as being built 
up from components that are regular. The regular structure that we are now going to discuss 
has been referred to in the literature as the box structure or matrix format of statistical 
tables. 

A box is an n-dimensional structure defined or "spanned" by n variables, called 7-variables. 
The Cartesian product of the value sets of the n 7-variables defines the cells of the box. Each 
cell contains a vector of m values of m variables, called (3-variables. The P-variables are the 
same for all cells in a box, and they are supposed to be statistics or estimated parameters for 
domains of interest corresponding to the respective cells. The domain of interest associated 
with a particular cell is defined by (a) the population property, sometimes called the oe-
property, which is the same for all the domains of interest corresponding to all the cells in the 
box, and (b) the property distinguishing the particular domain of interest, associated with the 
particular cell, from the domains of interest of the other cells in the box; the latter property is 
called the 7-property, since it is defined by a logical and-combination of n <y-variable, 
value>-pairs: 

PY = (7i = Vt) and (y2 = v2) and ... and (7n = vn) 

For example, the information defined by the INFOL-expression 

{PERSON(with nationality="foreign")(by sex x region) }.est_avg_income( 1990) 

can be organized as a two-dimensional box spanned by the 7-variables "sex" and "region". 
Each cell would contain a value of the (̂ -variable "est_avg_income(1990)" for a domain of 
interest defined by the a-property "PERSON(with nationality= "foreign")" and a 7-property 
defined by a certain <sex value, region value> combination. 

In terms of the relational data model, a box can always be represented by a relational table, 
having a column combination corresponding to the n 7-variables as its primary key, and 
columns corresponding to the m P-variables as additional columns. In the example above, we 
would get the following relational table, if we assume that "region" has three values: A, B, 
andC; 
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FOREIGNERS 

This mapping of a box structure to a relational table could be regarded as a normal 
representation of statistical tables. Naturally, in many situations one like a representation for 
presentation purposes, which looks quite different from this normal representation, but with 
contemporary computer technology and software tools, it should not be difficult for a user to 
transform a table, stored according to the normal representation, into his or her preferred 
format in a particular usage situation. On the other hand, for facilitating automatic exchange 
of statistical data and metadata, it would be extremely valuable if a standard representation 
format, like the above-mentioned UN/EDIFACT GESMES, could be agreed upon. 

Of course the example used above for illustration purposes is extremely simplified. There are 
many qualifications that need to be added. Consider the following list of problem areas: 

• sums on different levels; 
• hierarchical variables; 
• sparse tables; 
• null values; 
• time; 

Derivable data like sums can be represented explicitly or implicitly. Implicit representation 
means that we indicate in our metadata description of a table that we want the sums to be 
computed, whenever the table is presented to the user. (Naturally different users, and even the 
same user, can have different definitions of the same table for different purposes.) Explicit 
representation of derivable data implies redundance but may speed up retrieval. Generally 
speaking, redundance means additional storage costs and updating problems; however the 
updating problems need not be too severe in statistical databases, since they are often quite 
statical by nature, and updated incrementally only. 

In a specification and query language like INFOL, we may indicate by a suitable symbolism, 
which total and partial sums that we would like to specify. Example: 

{FOREIGNER(by sex(*, E(*)) x region(A, B, X(A, B), C, !(*))}. est_avg_income(1990) 

First of all, we have here introduced the name "FOREIGNER" to mean the same as 
"PERSON(with nationality="foreign")". Then we have indicated, variable by variable, which 
values and (total and partial) sums that we want to be available for a particular usage of 
aggregated data. For example, an asterisk (*) indicates the selection of all values in the value 
set for a particular variable, and X(...) indicates that the ^-variables should be aggregated over 
the listed values of the 7-variable (according to the proper formula for each variable, 
depending on whether it is a total, an average, a percentage, or whatever). 

The normal form representation of this selection would be: 
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FOREIGNERS 

As can be seen from this example, the introduction of a summary level for a 7-variable is 
equivalent to extending the value set with one element. With one summary level introduced 
for "sex" and two for "region", the cardinalities of the value sets will grow from 2 to 3, and 
from 3 to 5, respectively, and the number of rows in the relational table will grow from 2 x 3 
= 6 to (2 + 1) x (3 + 2) = 15, that is, by 150% in this case. 

Null values can be treated in much the same way as summary values. 

One or more of the 7-variables can be hierarchical variable. A hierarchical variable of k 
levels will be represented by k columns in the normal format relational table. For each level in 
the hierarchy, one or more summary values may be introduced. However, the summary values 
for different levels in the hierarchy cannot be chosen as independently of each other as they 
can for the variables in a crossclassification. 

As an example, we may assume that "region" in the example above is a two level hierarchy 
"county:municipality", where county A consists of the municipalities Al and A2, county B 
consists of the only municipality Bl, and county C consists of the municipalities Cl, C2, and 
C3. The information specified by the INFOL expression 

{FOREIGNER(by sex(*) x county(*, X(*)) : municipality(*. 2(*))}. est_avg_income(1990) 

would have the normal form representation (only the first part of it is shown): 
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FOREIGNER 

So far we have assumed without discussion that the time component of the statistical table 
should be associated with the P-variable(s) and the column(s) representing the pVvariables. 
However, there are several alternatives, corresponding to slightly different semantical 
interpretations of the data, and with different performance characteristics, if implemented in a 
relational database. 

If the table is a typical snapshot representation of the object system, there is only one time 
involved, and this time could be indicated in the metadata accompanying the table as a whole. 
In the example above, the relational table could for example be named "FOREIGNERS990)". 

If there are repeated snapshots, there could be uniform tables for different times, with names 
containing a time parameter. Example: "FOREIGNER(t)", where t = 1980,1985,1990. 
Another alternative is to put time as a parameter in the names of the ^-variables. Example: 
"est_avg_income(t)", where t = 1980, 1985,1990. 

A third alternative is to regard time as a 7-variable, which is crossclassified with the other 7-
variables. This implies a slight change in our conceptualization of the population of interest. If 
the "snapshot version" of our population of interest is assumed to contain objects of a certain 
type OBJ, a corresponding population with extension in time would constist of <OBJ, time> 
pairs, and interest groups would be formed by crossclassifying this population by means of the 
Cartesian product of the original 7-variables with an additional 7-variable that is based on 
time. 

Example: 

{<PERSON,TIME> 
(with PERSON.nationality="foreign" and TIME.year = 1985 or 1990) 
(by PERSON.sex x PERSON.region x TIME.year)}. est_avg_income; 

The normal relational representation of this conceptualization would be: 
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FOREIGNERS 

Summary values can be defined as in previous examples. However, it should be noted that the 
meaning of summary values formed over the time 7-variable may not be obvious. In fact it 
would very often not be meaningful at all. 

Yet another modelling of time will be necessary for event-based statistical information. In 
contrast to the snapshot-based statistical information that typically emanates from a statistical 
survey of traditional type, event-based statistical information often comes from other than 
statistical sources, for example administrative registers and other administrative information 
systems. Such systems are more or less directly updated, when events of certain types occur in 
the object system. The flow of such events (and consequent updates) is more or less 
continuous, and the updating transactions must be time-stamped. As a matter of fact the 
events will be a basic object type, forming at least one of the populations of interest, in the 
conceptual model for this type of statistical information. The time of the event will be a 
variable of the event object, and if the value set of the time variable is properly classified 
(grouped), it can serve as a 7-variable very much like other 7-variables in the aggregation and 
tabular presentation of statistical information. For this type of time 7-variable, the formation 
of summary values is usually meaningful and often useful, since it is meaningful to count 
events over different periods of time, and to summarize other variables for these events. 

Apart from events, processes is another type of object, which sometimes occur in event-based 
statistical systems. A process is characterized in the time dimension by a starting-point 
(associated with a process birth event) and a completion-point (associated with a process death 
event). Processes can be treated similarly as events in the aggregation of statistical 
information. 

So far we have discussed the semantical structure of statistical macroinformation, and how it 
can be represented by relational tables in a kind of canonical form for statistical macrodata. 
However, we still have to discuss desirable presentation structures for statistical macrodata, as 
well as operators needed to transform the statistical macrodata from the normal representation 
form to other desirable formats. In this paper I shall only give a few hints about these topics. 

The most straightforward presentation of a box structure of statistical data that is stored in its 
normal relational form is a listing of the relational table, row by row. Such a presentation 
would not be satisfactory in many situations, even if one made some cosmetical 
improvements, such as suppressing 7-variable values whenever they are identical with the 
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corresponding values in the previous row. A transformation of a slightly more complicated 
nature, which is often desirable, is to move one or more of the y-variables from the stub of the 
table to the column heads. Example: 

The moving of the 7-variable "sex" from the stub to the column headings in this example can 
be done by operations in an extended relational algebra. However, it is a relatively complex 
operation, and it implies a non-uniform handling of the value names for 7-variables in the stub 
and 7-variables in the column headings; the former are normal data in the relational table, 
whereas the latter must be part of the column names. 

A much more attractive solution to this problem (and similar ones) is to define a box algebra, 
that is, an algebra the operators of which transform boxes into boxes of another structure. 
Such algebras have been proposed and implemented; see for example Nilsson (1984). 

Another type of problem arises when the user wants to have the aggregated statistical data 
presented in a non-regular form, that is, a form which is not compatible with the box structure 
as such. Usually, however, such non-regular presentation structures can be constructed from a 
small number of regular boxes. A relatively common situation is when the user wants to 
present in the same table the contents of two boxes that have all 7-variables except one (more 
general: k) in common. Example: 
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6 Appendix: A formal specification of the INFOL language 

6.1 The metalanguage of the formal specification 

The brackets embrace something that may be omitted. 

The construction within the brackets may be repeated a variable number of 
times (zero, one or more), with a comma between the repetitions; in other 
words the whole construction is a list (an ordered set) of constructions of the 
same kind. 

Indicates that at this place in a construction there should be an element of the 
type mentioned within the broken brackets. 

The structure of an INFOL definition. The construction to the left of the arrow 
is what is defined by the definition. The construction to the right of the arrow 
is the construction which defines the construction to the left. 

The structure of a metalanguage definition. 

Denotes logical "or" in metalanguage definitions, that is, indicates alternative 
construction possibilities. 

obj object 

prop property 

rel relation 

var variable 

val value 

ref reference 

relop relational operator (<, =, >, etc) 

6.2 INFOL constructions 
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6.3 Informal comments, qualifications, and explanations 

First a general comment. The first object type referred to in an INFOL expressions will be the 
first current object type when the expression is processed (by a human being or otherwize). 
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The current object type will be changed as a result of certain constructions that appear in 
INFOL expression. For example, a path reference will "move" the current object type from 
one object type to another, via still other object types, which are "nodes" on the path. The 
properties, variables, and relations, referred to at a certain place in an INFOL expression, must 
be compatible with the current object type at that place. For example, if a variable is referred 
to, it must be relevant for the current object type at the place of the variable reference. Now 
will follow a numbered sequence of further comments related to the formal definitions with 
the corresponding numbers in the previous section: 

(1) A practical convention is to let the object aggregation operator agg be implied, if it is 
followed by a variable reference that starts with an aggregation function like count, 
sum, or avg. Another possibility, which has been illustrated in the paper, is to use set 
brackets {...} around the classification expression, instead of writing agg after it. 

(2) Note that <var ref> includes a reference to a constant value as a special case; a 
constant value can be regardes as a special case of a function. 

(6) The arithmetical functions are the usual ones. String functions include concatenation 
and substring operations. Set functions include Cartesian product (x) and hierarchical 
combination (:). Aggregation functions include functions that operate on the values of 
zero, one, or more variables for a set of object instances and produce a single value as 
an outcome. In addition to the functions mentioned above, and a other statistical 
operators like those which compute variance and correlation, there are functions like 
max and min. 

(7) Intuitively speaking, a path connects two object type nodes in an object graph. The 
connection consists of a chain of segments, where the start node and the end node of 
every segment are object types that are directly related in the object graph. If there is 
only one direct relation between two nodes, a practical convention may be to omit the 
relation reference in the path description. Alternatively, it is always possible to omit a 
reference to an object type at the end of a segment corresponding to a binary relation, 
since the object type is uniquely determined anyhow. 

(8) The quantifiers some and all correspond to the existence quantifier (3) and the 
universal quantifier (V) known from predicate logic. 

(10) The definition of an INFOL entity consists in general of two parts. The first part is a 
declaration, which (a) declares the new entity to belong to a specified category (for 
example "object type"), and (b) gives a name to the entity. The second part of the 
definition is separated from the first one by an arrow (<—), and it contains a 
derivation expression, that is, an expression for deriving the new entity from existing 
ones. Of course, the second part appears only if the new entity is derivable. If the first 
part of the definition is missing, it is an implicit definition; the category of an 
implicitly defined entity is implied by the context, and the name, if needed, will have 
to be automatically generated. 

(11) This seemingly simple expression actually covers the whole query language of 
INFOL, including so-called otfi-queries and ocP7-queries (see Sundgren (1973)), and it 
can be regarded as a conceptual level counterpart to database query languages like 
SQL. 
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(12) The first type of view definition creates a single-object view, that is, a view which 
arranges all information around one single object. The other type of view definition 
creates a multi-object view, containing several object types and relations. The single-
object view is often useful as a basis for statistical tabulations. 
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