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PREFACE 

In survey sampling the prevailing estimation strategy for estimating a finite 

population parameter 6 is based upon an (approximately) unbiased point estimator 

8 and an (approximately) unbiased variance estimator V(0). Then the central 

limit theorem is referred to for an assumption that 9 is approximately normally 

distributed and it is stated that the interval 

covers the true value 6 with a probability of approximately 95 %. Sometimes the 

value 1.96 is exchanged for the corresponding value taken from Student's t table 

with an appropriate number of degrees of freedom. 

However, the central limit theorem does not say that this or that sample size 

is sufficient for the normal approximation to be reasonable in sampling from a 

particular finite population. For this reason much effort has been spent on the 

problem of convergence rates of sampling distributions to the normal distribu­

tion for simple random sampling from finite populations. But so far the attempts 

to reach exact theoretical results in this respect have more or less failed. 

This fact points at the necessity to seek other directions to approach this 

problem. 

The non-applicability of the normal approximation is a problem that occurs 

frequently in sampling practice. One example is sampling from very skewed 

populations such as variables reported by enterprises (production, employment, 

investment, export, import). Another example is small area estimation where 

only a small number of observations form the basis of a certain figure in a 

table. 
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For this reason a work has been initiated in the Statistical Methods Unit of 

Statistics Sweden concerning sampling from very skewed populations. One line 

of research has been to try to establish rules for when the normal approximation 

is applicable by making empirical studies of the distributional behaviour of 

estimators. In this paper such rules based on the population skewness are 

presented for the simple random sampling case. 

The work is a part of a larger project within the Methods Unit concerning 

sampling and estimation led by Bengt Swensson. He, Carl-Erik Särndal and Jan 

Hagberg have also contributed to this report by giving helpful comments and 

suggestions. 

1 Introduction 

Erdös and Renyi (1959) and Häjek (1960) have developed conditions in finite 

populations for the sampling distribution of the sample mean to converge to 

normality. Höglund (1978) has made the following remainder term estimate (the 

formula is slightly manipulated algebraically to serve our purpose): 

F is the distribution function of the sum of a sample of 

n elements among the N population elements (X....X....JO , 

$ the standard normal distribution function, 

y is the population mean, 

a is the population standard deviation, 
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f = n/N, 

C is an absolute constant and 

We notice that the deviation from normality is bounded by a term containing 

the factor G , which may be considered to be a measure of the population skewness. 

"For populations in which the principal deviation from normality consists of 

marked positive skewness", Cochran (1977) suggests the simple rule 

"This rule is designed so that a 95 % confidence probability statement will be 

wrong not more than 6 % of the time." We notice that the rule includes G - a 

different measure of skewness (in fact the one most commonly used). 

In this paper confidence intervals based on samples from the dichotomous 

population are systematically studied with respect to different population 

sizes, sample sizes and degrees of skewness. The reason for choosing the 

dichotomous population is that is is possible to obtain exact coverage 

probabilities for it. Also, the whole scale of different degrees of skewness 

is represented for a certain population size of the dichotomous population. 

Exact probabilities are calculated for nominal 95 % confidence intervals based 

on the Student's t approximation to cover the true population mean. The t approxi­

mation is chosen instead of the normal one because it can be expected to give 
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better approximations for small sample sizes and the 95 %-level because it is 

the most common one in practical survey sampling. Properties of these exact 

probabilities are demonstrated and simple rules of the Cochran type are 

2 
proposed. The rules are formulated as n > K • G , where K is the constant r v a a 

required for obtaining at least a % probability for a supposed 95 % confidence 

interval to be true. The effects of using G as compared to Gr for G are 
H « 

studied. The rules are also found to work well for finite populations generated 

from some continuous parametric distributions. 

2 The dichotomous population 

For the dichotomous population studied the following notations are used: 

The population has the following characteristics: 

Population mean = y = P 

2 2 
Population variance = a = P - P 

Skewness (Cochrans) = 6 - (1 - 2P)/(P - P 2 ) 0 , 5 

Skewness (Höglunds) = G„ - (1 - 2P + 2P2)/(P - P 2 ) 0 , 5 

£1 

where P = M/N. 

Notice that G,. = G„ + 2P /(1 - P) .5 so that lim (G„ - G j = 0. Notice also 
H C p ^ H C 

that G = 0 and G„ = 1 when P = 0.5. c H 
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The sample has the following characteristics: 

sample mean = X = k/n 

2 2 
sample variance = s = (k-k /n)/(n-1) 

A supposed 95 % confidence interval for y based on the sample outcome and the 

t-distribution would now be 

(Since we are interested in how bad the t approximation could be at worst, the 

continuity correction is not used.) 

Now, let L be the indicator for this confidence interval statement as a 

function of the sample outcome. That is: 

{1 for those k when the confidence interval statement is true 

0 for those k when the confidence interval statement is false 

The actual coverage probability (ACP) is now defined as the probability for 

a sample of a certain size n from our population to produce a true confidence 

interval statement. In mathematical notation this becomes 

according to the hypergeometrical distribution. 
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Computer programs have been written, which compute these probabilities for 

various combinations of N, M and n. In table 1 one example of a result from 

such a program is shown. 

There are many interesting features in this table. For example, there is not 

a steady increase in the ACP for increasing sample sizes. There are two reasons 

for this. One is due to the fact that the sampling distribution does not converge 

to the t-distribution when n approaches N. Actually, as pointed out by Plane 

and Gordon (1982), when n > N/2 the sampling distribution becomes more and 

more dissimilar to the normal distribution 

The other reason for the jumps in the ACP as a function of sample size is 

understood when you look at the column "Outcomes where L = 1". There is, 

for example, a big downward jump from n=29 (ACP=95.6) to n«30 (ACP«82.6). 

This jump is due to the fact that the outcome k=1, which has a large proba­

bility to occur, for n=29 leads to a confidence interval, which just barely 

covers y (the interval is from -0.0327 to 0.1016) but for n»30 the upper 

limit of the interval falls a little bit short of y (it goes from -0.0313 to 

0.0980). 

In the example presented in table 1 you can also see that - due to the 

fluctuations of the ACP - you can never obtain a stable ACP-level of more 

than about 92 % by increasing the sample size (up to N/2). 

1) 

Plane and Gordon prove that the sampling distributions for n and N-n are 

mirror images of each other except for a scale change. However, as could be 

seen in Table 1, this does not mean that the ACP is the same for n and N-n. 

The scale factor is obviously important here. 
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3 Guaranteed ACPS 

A lot of tables like table 1 have been produced but for the sake of space they 

are not presented here. However, in table 2, we have calculated Cochran type 

constants leading to a certain guaranteed ACP. The procedure is as follows. 

In deciding when a guaranteed ACP a is obtained we look for the smallest 

value of n (called n ) such that ACP(n) > a for all n > n . (For reasons 
a — — a 

2 
mentioned above only n < N/2 are considered.) Then we calculate K _ = n /G„ 

— aC a C 
2 2 

and K Tr = n /G„ whereupon we can obviously say that for all n > K • G 
aH a H J J a 

(indicated C or H) we have ACP(n) > a. 

For example look for a guaranteed ACP of 85 % in table 1. We see that n = 
U itjj 

= 32, K_ oc_ = 32/2.67
2 = 4.5 and K. o c u = 32/2.73

2 = 4.3. These values could 
U . oiC U .o5ri 

be found in the row in table 2 indicated N=300, M=30. 

These calculations have been done for N=100 (100) 1 000, M=10, 20, 30, 40, 50, 

75 and 100 (except for N=100 where M=5 (5) 50 is used), 2 £ n £ N/2 and for 

a = 85 %, 90 %, 93 %, 94 % and 94.5 %. The results are presented in table 2. 

2 
As we calculate K = n /G and consider only n < N/2, we realize that for one 

a a — 
2 

particular population you can never obtain larger values of K than N/2G . 

The last two columns of table 2 and 3 present the value of this limit. Values 

of K close to the limit (80 % of it has been chosen as a simple rule) are put 
a 

within brackets, since the constants obtained in these cases may be merely 

accidental from the point of view of all possible populations. 

Some striking features in table 2 are 
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Cochrans measure of skewness (G ) is not at all suited to 

establishing criteria for populations with almost symmetrical 

distributions. Since G = 0 for symmetrical distributions 

K „ ->• °° as G„ 0. When P > 0.25 it seems advisable not to use 
aC C 

G_, any longer. G , on the other hand, is useful for all degrees c a 
of population skewness. When the skewness is large G and G„ are 

C H 
almost identical. 

- Guaranteed ACPs of 94 % or more seem to be very difficult to 

obtain for these populations. K = 25, as suggested by Cochran, 

is clearly not enough. (We recognize, of course, that Cochran's 

rule is not intended to apply to dichotomous populations. For the 

equivalent case of proportions he suggests other criteria.) For 

a = 85 % K .. = 5 seems to be sufficient in most cases and K „ = 6 
aH aH 

in all cases. For a = 90 % the corresponding figures would be 

K „ = 10 or 11. For a = 93 % it is already more difficult to pass 
aH 

a judgement but i t seems as if K TT = 40 would be s u f f i c i e n t . 
aH 

4 Average ACPS 

Instead of dealing with guaranteed ACPs we may define another, more "liberal", 

concept, called the average ACP, in the following way. 

g is an average ACP for a certain sample size n in a certain population (M, N), 

if ACP(n ) >_ 6 and 

for all values of s such that 0 < s < N/2 - n~. 
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In order to decide when an average ACP $ is obtained we look for the 

smallest value of n - called n - such that the above conditions are valid. 

u a 
2 2 

In the same way as before we then calculate K = n /G and K = n 0 /G„. We 
pC p C pH p H 

2 
then state that for n > K • G (indicated C or H) there is an average ACP 

p 
of at least 3« 

As an example we look for an 85 % average ACP in table 1. We see that ACP(18) 

> 85 %. There are only two ACPs smaller than 85 % for n > 18 (n = 30 and 31) 

and those are "averaged out" by the large ACPs surrounding them. We therefore 

certify that nA oc = 18, Kn QCn = 18/2.672 = 2.5 and KA QCI1 = 18/2.73
2 = 2.4. 

U. O J U.oOL. U.ojrl 
These values could be found in the row in table 3 indicated N=300, M=30. 

What is the reason for bringing in the average ACP concept? It is obviously in 

order to even out the jumps in the ACP variation. In real life the exact popula­

tion distribution is not known but you have an indication of the skewness from 

your sample. It is then intuitively reasonable to think of some kind of "expected 

ACP". Also, for larger and more diversified populations than the dichotomous 

one studied here, the jumps will be smaller and average ACP will be closer to 

the actual one. 

The calculations based on the average ACP concept have been done for the same 

values of N, M, n and 3 (a) as was the case for the guaranteed ACPs. The results 

are presented in table 3. 

What are the conclusions which could be drawn from this table? 

- The relations between G and G is the same as in the preceding 
C H 

section. 
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We generally get much lower constants than in the guaranteed 

ACP case. We also get useful results for the high 3~levels. 

We see that a KD of 3-4 (2-3 for very skew populations) seems 
pH 

to be sufficient for 85 % average ACP. For 90 % K0 = 5 seems 
pH 

to be enough, for 93 % 10-12, for 94 % around 20, while for 

94.5 % it is more difficult to make a definite statement but 

K0 = 35-40 seems to suffice. 
pH 

5 Large populations 

The populations studied above are comparatively small. N ranges from 100 up to 

1 000. In certain instances there is a tendency of the constants K to rise with 

rising population size. It is therefore interesting to see what happens in much 

larger populations. 

The rapid increase in computer time, however, preclude systematic investigations 

like those above for large populations. But it is possible to calculate ACPs 

for a limited selection of sample sizes. Tables 4-6 present some results of 

this kind. 

In tables 4 and 5 some populations with different degrees of skewness are 

studied for some sample sizes. The population size is 10 000 in table 4 and 

100 000 in table 5. For some sample sizes the corresponding value of the 

2 
constant (K = n/G ) is also given. Because of the scattered sample sizes 

n rl 

no definite conclusions can be drawn from these tables but there is nothing 

in them contradicting the above conclusions which are based on smaller popula­

tion sizes. 

Table 6 presents a population with a size of eight millions with 
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one percent ones and 99 percent zeroes. (This happens to be about the largest 

population of interest when sampling in Sweden.) ACPs are calculated for 

sample sizes from 50 to 6 000 with intervals of 50. I^fc3 for n=300, 5 for 

n=500, 11 for n=1 050, 20 for n=1 950 and 40 for n=3 900. Also in this case, 

the conclusions based on the small populations seem to be approximately valid. 

6 Recommended values of K 

The investigations presented so far could be summarized in the following way. 

In order to ensure at least a certain actual coverage probability (ACP), 

when sampling from a dichotomous finite population and using a t approximation 

for a 95 % confidence interval, the sample size n must be larger than K • G2. 

H 

The value of the constant K needed is a function of the desired ACP. It also 

depends upon the "average" or "guaranteed" interpretation of the ACP in about 

the following way: 

We immediately realize that it is very difficult to formulate any rules with 

a "guaranteed" interpretation attached to them. But with the "average" inter­

pretation this becomes possible and the K-levels get practical significance. 

The 94 %-rules is also close to the rule suggested by Cochran. 

In the next section we investigate ACPs for other types of distributions 

based on K-levels of 3, 5, 11, 20 and 40. 
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7 Populations based on some continuous parametric distributions 

In order to find out if the constants K could be applied to populations with 

structures entirely different from the dichotomous one, finite populations 

based on fixed percentiles of some continuous theoretical distributions were 

generated. These are: 

I) The beta distribution with probability density function 

where B(a,b) is the beta function. 

.... «. r , 2(b-a)(a+b+1)1/2 

Y = coefficient of skewness = . 
(a+b+2)(ab)1/ 

II) The lognormal distribution with probability density function 

and 

III) The power function with distribution function 

F(x) = (x/6)C; 0 < x < 9 , 6 > 0, c > 0 

and 
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IV) The Weibull distribution with distribution function 

where T(x) is the gamma function. 

In all cases y stands for the coefficient of skewness corresponding to G 

above, that is 

The reference used for these distributions is Patel et al (1976). 

A common feature of all these distributions is that for some value(-s) of 

the involved parameter(-s) v c a n take on at least any value > 0. 

For each of these four distributions six different finite populations have 

been generated with different degrees of skewness. The finite populations 

are all of size 500 and have been generated by taking the percentiles from 

0.001 to 0.999 with intervals of 0.002. 

For each population five different sample sizes have been chosen so that 

they correspond as closely as possible to the average K-levels above. This 

means that n has been chosen so that 
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for values of K of 3, 5, 11, 20 and 40 respectively. 

For every sample size 1 000 Monte-Carlo-simulations of a simple random sample 

without replacement have been made. For each sample the population mean has 

been estimated and a confidence interval based on the sample standard deviation 

and the t-distribution has been calculated. The number of cases when this 

interval covers the true population mean has been counted. This figure divided 

by 1 000 becomes our estimated actual coverage probability (EACP). EACP is 

of course stochastic in this case with a standard error of 0.7 % to 1.1 % 

when EACP ranges from 95 % to 85 %. 

In table 7 - 1 0 the outcome of these simulations is presented in terms of 

the EACP for a certain combination of population and sample size. We see 

that in almost all cases the 3~levels expected from the studies of the 

dichotomous population are surpassed, often by large margins. Only in five 

cases are the presupposed ACP-levels not obtained (those cases are indicated 

with an asterisk). The EACPs are in these cases 0.1 - 0.4 % below the expected 

level. One case is for K=11 (0.1 below), three cases are for K=20 (0.1-0.3 below) 

and one case is for K=40 (0.4 below). These small deviations in our results are 

not enough to cast any serious doubts on the usefulness of our proposed rules as 

a whole. The deviations may very well be entirely due to stochastic effects. 

However, we must also admit that our rules for the higher ACP-levels 

(3 = 94 and 94.5 %) are not equally well founded compared with those for the 

lower levels (g= 85 and 90 % ) . A more solid foundation for these levels would 

require a study of larger populations and sample sizes and also more replica­

tions for each case, since we are so close to 95 % that the stochastic effect 
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of the simulations becomes an important disturbance. 

8 Conclusions 

Our empirical investigations have supported the following rule for the use 

of the Student's t approximation (and thereby also the normal approximation 

for reasonable sample sizes) in simple random sampling. 

If you apply the t approximation for a 95 % confidence interval and the sample 

size 

you could be reasonably certain that the coverage probability is at least $. 

Compared with the rule suggested by Cochran a different measure of skewness 

is used. For populations with large positive skewness the two measures 

approximately coincide but for close-to-symmetrical populations it is 

necessary to use G instead of G . 
H c 

Five values of K have been derived, namely 

K_ Q. and Kn Q,,- remain not equally well founded compared with the others. 
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As a principal rule for allowing the t approximation in simple random 

sampling for a 95 % confidence interval, we propose 

If this rule is applied you should be able to count on being correct about 

94 % of the time. 

The values of KR are not guaranteed in the sense that no instances could be 

found, where they are not sufficient. But in the average sense defined above 

they generally hold good and they are therefore sound to use in practical work. 

However, one warning is necessary to issue. The rules above are based upon 

knowledge of the population skewness. It is not sufficiently known to what 

extent estimates of this skewness from the sample could replace it. For 

example, the sample skewness is a consistent but biased estimate of the 

population skewness. The bias could be considerable precisely in those 

cases where you would want to apply the sample skewness in the rules above. 

Work in this area is going on at the present time and results will be 

published in a forthcoming report. 

What, then, are the theoretical reasons for these rules? In this area more 

research is undoubtedly needed in the future. Here, let us only point out 

the fact that the relevant convergence theorems and remainder term estimates 

are stated in terms of the standardized third moment of the population 

distribution. Therefore there is a reason to believe that two populations 

with the same degree of skewness should not differ radically with respeet 

to the degree of correspondence between their sampling distributions and 

the t-distribution. 
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Table 1: Actual coverage probability (ACP) for a dichotomous population. 
N=300. M=30. n=2-299. m=0.1. G =2.67. G =2.73 
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* 
For n > 150 the normal approximation is used. 
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Table 2: Cochran type constants (K ) leading to a certain guaranteed ACP for all n > K • G for nominal 95 % 
confidence intervals 
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Table 3: Cochran type constants (K) leading to a certain average ACP for all n > K G for nominal 95 % 
confidence intervals 
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Table 4: ACPs for some populations and sample sizes when N=10000. Normal approximation is used. 
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Table 5: ACPs for some populations and sample sizes when N=100000. Normal approximation is used. 
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Table 6: ACPs when N=8000000 and M=80000 for some sample sizes G = G =9.85. 
(Normal approximation is used.) 
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Table 7: Simulations from populations based on the beta distribution. 



36 

Table 8: Simulations from populations based on the lognormal distribution. 
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Table 9: Simulations from populations based on the power function distribution 
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Table 10: Simulations from populations based on the Weibull distribution. 
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