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PREFACE

In survey sampling the prevailing estimation strategy for estimating a finite
population parameter 8 is based upon an (approximately) unbiased point estimator
A AN

® and an (approximately) unbiased variance estimator V(8). Then the central

limit theorem is referred to for an assumption that 6 is approximately normally

distributed and it is stated that the interval

[
1A A ;

9 + 1.96 x/V(8)

covers the true value 6 with a probability of approximately 95 7. Sometimes the
value 1.96 is exchanged for the corresponding value taken from Student's t table

with an appropriate number of degrees of freedom.

However, the central limit theorem does not say that this or that sample size

is sufficient for the normal approximation to be reasonable in sampling from a
particular finite population. For this reason much effort has been spent on the
problem of convergence rates of sampling distributions to the normal distribu-
tion for simple random sampling from finite populations. But so far the attempts
to reach exact theoretical results in this respect have more or less failed.
This fact points at the necessity to seek other directions to approach this

problem.

The non-applicability of the normal approximation is a problem that occurs
frequently in sampling practice. One example is sampling from very skewed
populations such as variables reported by enterprises (production, employment,
investment, export, import). Another example is small area estimation where
only a small number of observations form the basis of a certain figure in a

table.



For this reason a work has been initiated in the Statistical Methods Unit of
Statistics Sweden concerning sampling from very skewed populations. One line

of research has been to try to establish rules for when the normal approximation
is applicable by making empirical studies of the distributional behaviour of
estimators. In this paper such rules based on the population skewness are

presented for the simple random sampling case.

The work is a part of a larger project within the Methods Unit concerning
sampling and estimation led by Bengt Swensson. He, Carl-Erik Sdrndal and Jan
Hagberg have also contributed to this report by giving helpful comments and

suggestions,

1 Introduction

Erdds and Rényi (1959) and Hijek (1960) have developed conditions in finite
populations for the sampling distribution of the sample mean to converge to
normality. Hoglund (1978) has made the following remainder term estimate (the

formula is slightly manipulated algebraically to serve our purpose):

* G,., where

F(x) - o fX2H o
\/n(1 -f) n(1 -f)

F is the distribution function of the sum of a sample of
n elements among the N population elements (X1"'Xj"'XN)’
® the standard normal distribution function,

1 is the population mean,

0 is the population standard deviation,



f = n/N,

C is an absolute constant and

We notice that the deviation from normality is bounded by a term containing

the factor GH,whichnmy be considered to be a measure of the population skewness.

"For populations in which the principal deviation from normality consists of

marked positive skewness'', Cochran (1977) suggests the simple rule

n > 25 Gg, where

g I~

A
. =N __j=
3

C

g

"This rule is designed so that a 95 7 confidence probability statement will be
wrong not more than 6 7 of the time." We notice that the rule includes Gc - a

different measure of skewness (in fact the one most commonly used).

In this paper confidence intervals based on samples from the dichotomous
population are systematically studied with respect to different population
sizes, sample sizes and degrees of skewness. The reason for choosing the
dichotomous population is that is is possible to obtain exact coverage
probabilities for it. Also, the whole scale of different degrees of skewness

is represented for a certain population size of the dichotomous population.

Exact probabilities are calculated for nominal 95 Z confidence intervals based
on the Student's t approximation to cover the true population mean. The t approxi-

mation is chosen instead of the normal one because it can be expected to give



better approximations for small sample sizes and the 95 Z-level because it is
the most common one inpractical survey sampling. Properties of these exact
probabilities are demonstrated and simple rules of the Cochran type are
proposed. The rules are formulated as n > Ka . G2, where Ka is the constant
required for obtaining at least ¢ % probability for a supposed 95 Z confidence
interval to be true. The effects of using GH as compared to GC for G are

studied. The rules are also found to work well for finite populations generated

from some continuous parametric distributions.
2 The dichotomous population

For the dichotomous population studied the following notations are used:

Value Number of elements Number of elements
in the population in the sample

0 N-M n =~k

1 M k

Total N n

The population has the following characteristics:

Population mean = y = P

Population variance = 02 =P - P2

Skewness (Cochrans) GC = (1 -2P)/(P - PZ)O.S

Skewness (Hoglunds) G, = (1 - 2P + 2P2)/(P - P2)0°5

where P = M/N.

Notice that G_. = G_ + 2P1'5/(1 - P)O'5 so that lim (G
B¢ P-0

that GC = 0 and GH = {1 wvhen P = 0.5.

_ GC) = 0, Notice also



The sample has the following characteristics:

sample mean = X = k/n

s = (k=k*/n)/(n=1)

sample variance

A supposed 95 7 confidence interval for j based on the sample outcome and the

t=distribution would now be

X - to 975 * S ° N(1-£) /n < U<X + to.975 * S ° V(1-£) /n

(Since we are interested in how bad the t approximation could be at worst, the

continuity correction is not used.)

Now, let Ik be the indicator for this confidence interval statement as a

function of the sample outcome. That is:

1 for those k when the confidence interval statement is true

k 0 for those k when the confidence interval statement is false

The actual coverage probability (ACP) is now defined as the probability for

a sample of a certain size n from our population to produce a true confidence

interval statement. In mathematical notation this becomes

ACP(N, M, n) pk) <1

0

n
N ~MB3

K k

1]

where p(k)

according to the hypergeometrical distribution.



Computer programs have been written, which compute these probabilities for
various combinations of N, M and n. In table 1 one example of a result from

such a program 1is shown.

There are many interesting features in this table. For example, there is not

a steady increase in the ACP for increasing sample sizes. There are two reasons
for this. One is due to the fact that the sampling distribution does not converge
to the t-distribution when n approaches N. Actually, as pointed out by Plane

and Gordon (1982), when n > N/2 the sampling distribution becomes more and

1)

more dissimilar to the normal distribution ~.

The other reason for the jumps in the ACP as a function of sample size is
understood when you look at the column "Outcomes where Ik = 1", There is,
for example, a big downward jump from n=29 (ACP=95.6) to n=30 (ACP=82.6).
This jump is due to the fact that the outcome k=1, which has a large proba-
bility to occur, for n=29 leads to a confidence interval, which just barely
covers U (the interval is from -0.0327 to 0.1016) but for n=30 the upper
limit of the interval falls a little bit short of y (it goes from =0.0313 to

0.0980).

In the example presented in table 1 you can also see that = due to the
fluctuations of the ACP - you can never obtain a stable ACP-level of more

than about 92 Z by increasing the sample size (up to N/2).

1)

Plane and Gordon prove that the sampling distributions for n and N-n are
mirror images of each other except for a scale change. However, as could be
seen in Table 1, this does not mean that the ACP is the same for n and N-n.

The scale factor is obviously important here.



3 Guaranteed ACPS

A lot of tables like table 1 have been produced but for the sake of space they
are not presented here. However, in table 2, we have calculated Cochran type

constants leading to a certain guaranteed ACP. The procedure is as follows.

In deciding when a guaranteed ACP o is obtained we look for the smallest
value of n (called na) such that ACP(n) > o for all n Z_na. (For reasons
mentioned above only n < N/2 are considered.) Then we calculate KuC = na/Gé
_ 2 . 2
and KaH = na/GH whereupon we can obviously say that for all n > Ku * G

(indicated C or H) we have ACP(n) > a.

For example look for a guaranteed ACP of 85 7 in table 1. We see that Ny g5 =

- - 2 _ - 2 _
= 32, KO.85C = 32/2.67" = 4.5 and KO.85H = 32/2.73"7 = 4.3. These values could

be found in the row in table 2 indicated N=300, M=30.

These calculations have been done for N=100 (100) 1 000, M=10, 20, 30, 40, 50,
75 and 100 (except for N=100 where M=5 (5) 50 is used), 2 < n < N/2 and for

o=8517%, 90 %, 93 %, 94 % and 94.5 7. The results are presented in table 2.

As we calculate Ku = nOL/G2 and consider only n < N/2, we realize that for one

particular population you can never obtain larger values of Kd than N/2G2.

The last two columns of table 2 and 3 present the value of this limit. Values

of Ka close to the limit (80 % of it has been chosen as a simple rule) are put
within brackets, since the constants obtained in these cases may be merely

accidental from the point of view of all possible populations.

Some striking features in table 2 are



- Cochrans measure of skewness (GC) is not at all suited to
establishing criteria for populations with almost symmetrical

distributions. Since GC = 0 for symmetrical distributions

KaC > © as GC + 0. When P > 0.25 it seems advisable not to use

GC any longer. GH’ on the other hand, is useful for all degrees

of population skewness. When the skewness is large GC and GH are

almost identical.

- Guaranteed ACPs of 94 7 or more seem to be very difficult to

obtain for these populations. KaC

is clearly not enough. (We recognize, of course, that Cochran's

= 25, as suggested by Cochran,

rule is not intended to apply to dichotomous populations. For the
equivalent case of proportions he suggests other criteria.) For

o =857 Ka = 5 gseems to be sufficient iIn most cases and Ka =6

H H

in all cases. For oo = 90 % the corresponding figures would be

KaH = 10 or 11, For o = 93 7 it is already more difficult to pass
a judgement but it seems as if KaH = 40 would be sufficient.
4 Average ACPS

Instead of dealing with guaranteed ACPs we may define another, more "liberal",

concept, called the average ACP, in the following way.

B is an average ACP for a certain sample size n. in a certain population (M, N),

0
if ACP(nO) > B and

S

I ACP(n,.+j)
; 0
=0 > B

s+1

for all values of s such that 0 <'s i_N/Z - ng.



In order to decide when an average ACP R is obtained we look for the
smallest value of n, - called n8 - such that the above conditions are valid.

In the same way as before we then calculate K = nB/Gé and K = nB/Gé. We

RC fH
then state that for n > KB . G2 (indicated C or H) there is an average ACP

of at least B.

As an example we look for an 85 7 average ACP in table 1. We see that ACP(18)
> 85 7. There are only two ACPs smaller than 85 7 forn > 18 (n = 30 and 31)

and those are '"averaged out" by the large ACPs surrounding them. We therefore
= 18/2.672 = 2.5 and K = 18/2.732 = 2.4,

certify that n = 18,

0.85 Ko.85¢ 0.85H
These values could be found in the row in table 3 indicated N=300, M=30.

What is the reason for bringing in the average ACP concept? It is obviously in
order to even out the jumps in the ACP variation. In real life the exact popula-
tion distribution is not known but you have an indication of the skewness from
your sample. It is then intuitively reasonable to think of some kind of "expected
ACP". Also, for larger and more diversified populations than the dichotomous

one studied here, the jumps will be smaller and average ACP will be closer to

the actual one.

The calculations based on the average ACP concept have been done for the same

values of N, M, n and B (o) as was the case for the guaranteed ACPs. The results

are presented in table 3.
What are the conclusions which could be drawn from this table?

- The relations between GC and GH is the same as in the preceding

section,
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~ We generally get much lower constants than in the guaranteed
ACP case. We also get useful results for the high B-levels.
We see that a KBH of 3-4 (2-3 for very skew populations) seems
to be sufficient for 85 7 average ACP. For 90 7 KBH = 5 seems
to be enough, for 93 Z 10-12, for 94 7 around 20, while for
94.5 7 it is more difficult to make a definite statement but
KBH = 35-40 seems to suffice.

5 Large populations

The populations studied above are comparatively small. N ranges from 100 up to
1 000. In certain instances there is a tendency of the constants K to rise with
rising population size. It is therefore interesting to see what happens in much

larger populations.

The rapid increase in computer time, however, preclude systematic investigations
like those above for large populations. But it is possible to calculate ACPs
for a limited selection of sample sizes. Tables 4-6 present some results of

this kind.

In tables 4 and 5 some populations with different degrees of skewness are
studied for some sample sizes. The population size is 10 000 in table 4 and
100 000 in table 5. For some sample sizes the corresponding value of the
constant (KH = n/Gé) is also given. Because of the scattered sample sizes

no definite conclusions can be drawn from these tables but there is nothing

in them contradicting the above conclusions which are based on smaller popula-

tion sizes.

Table 6 presents a population with a size of eight millions with



one percent ones and 99 percent zeroes. (This happens to be about the largest
population of interest when sampling in Sweden.) ACPs are calculated for
sample sizes from 50 to 6 000 with intervals of 50. KH4¥3 for n=300, 5 for

n=500, 11 for n=1 050, 20 for n=1 950 and 40 for n=3 900. Also in this case,

11

the conclusions based on the small populations seem to be approximately valid.

6 Recommended values of K

The investigations presented so far could be summarized in the following way.

In order to ensure at least a certain actual coverage probability (ACP),

when sampling from a dichotomous finite population and using a t approximation

for a 95 7 confidence interval, the sample size n must be larger than K » Gﬁ.
The value of the constant K needed is a function of the desired ACP. It also
depends upon the "average" or "guaranteed" interpretation of the ACP in about

the following way:

Value of K for ACP =

85 90 93 94 94.5
Guaranteed 5-6 10-11 (40) ? ?
Average 2-4 5 10-12 20 40

We immediately realize that it is very difficult to formulate any rules with
a '"guaranteed" interpretation attached to them. But with the "average" inter-
pretation this becomes possible and the K~levels get practical significance.

The 94 Z-rules is also close to the rule suggested by Cochran.

In the next section we investigate ACPs for other types of distributions

based on K-levels of 3, 5, 11, 20 and 40.
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7 Populations based on some continuous parametric distributions

In order to find out if the constants K could be applied to populations with

structures entirely different from the dichotomous one, finite populations

based on fixed percentiles of some continuous theoretical distributions were

generated. These are:

I) The beta distribution with probability density function

where B(a,b) is the beta function.

1/2
Y = coefficient of skewness = 2(b—a)(a+b+13/2

(a+b+2) (ab)

IT) The lognormal distribution with probability density function
f(x) = (ox)_1 . (ZW)-1/2 . exp[}(log x - G)Z/ZOZJ} x>0, 0>0
and
Y = [exp(oz) + 2] . [exp(cjz).— 1]1/2 :
III) The power function with distribution function
F(x) = (x/8)%; 0<x<8, 6>0,c>0

and
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_ 2(1=¢) (2+c) /2

(3+c) - c1/2

v

IV) The Weibull distribution with distribution function

F(x) =1 - exp[} Gxé]; x>0,06>0,¢c>0

_ T(1+3/c) = 3T(1+2/¢) T(1+1/c) + 2I°(1+1/c)
[Farv2/e) = 12 (1+1/0)) 372

Y

where T'(x) is the gamma function.

In all cases Yy stands for the coefficient of skewness corresponding to GC

above, that is
2
Y = E(x-u)3/[E(x—u) :]3/2
The reference used for these distributions is Patel et al (1976).

A common feature of all these distributions is that for some value(-s) of

the involved parameter(-s) <y can take on at least any value > 0.

For each of these four distributions six different finite populations have
been generated with different degrees of skewness. The finite populations
are all of size 500 and have been generated by taking the percentiles from

0.001 to 0.999 with intervals of 0.002.

For each population five different sample sizes have been chosen so that
they correspond as closely as possible to the average K-levels above. This

means that n has been chosen so that
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2
n> Koyt Gy >m-

for values of K of 3, 5, 11, 20 and 40 respectively.

For every sample size 1 000 Monte-Carlo-simulations of a simple random sample
without replacement have been made. For each sample the population mean has
been estimated and a confidence interval based on the sample standard deviation
and the t-distribution has been calculated. The number of cases when this
interval covers the true population mean has been counted. This figure divided
by 1 000 becomes our estimated actual coverage probability (EACP). EACP is

of course stochastic in this case with a standard error of 0.7 % to 1.1 Z

when EACP ranges from 95 7 to 85 Z.

In table 7 - 10 the outcome of these simulations is presented in terms of

the EACP for a certain combination of population and sample size. We see

that in almost all cases the B-levels expected from the studies of the
dichotomous population are surpassed, often by large margins. Only in five

cases are the presupposed ACP-levels not obtained (those cases are indicated
with an asterisk). The EACPs are in these cases 0.1 = 0.4 7 below the expected
level. One case is for K=11 (0.1 below), three cases are for K=20 (0.1-0.3 below)
and one case is for K=40 (0.4 below). These small deviations in our results are
not enough to cast any serious doubts on the usefulness of our proposed rules as

a whole. The deviations may very well be entirely due to stochastic effects.

However, we must also admit that our rules for the higher ACP-levels

(B= 94 and 94.5 %) are not equally well founded compared with those for the
lower levels (B= 85 and 90 7). A more solid foundation for these levels would
require a study of larger populations and sample sizes and also more replica-

tions for each case, since we are so close to 95 % that the stochastic effect
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of the simulations becomes an important disturbance.

8 Conclusions

Our empirical investigations have supported the following rule for the use

of the Student's t approximation (and thereby also the normal approximation

for reasonable sample sizes) in simple random sampling.

If you apply the t approximation for a 95 7 confidence interval and the sample

size

you could be reasonably certain that the coverage probability is at least B.
Compared with the rule suggested by Cochtan a different measure of skewness
is used. For populations with large positive skewness the two measures
approximately coincide but for close~to-symmetrical populations it is

necessary to use GH instead of GC.

Five values of K have been derived, namely

Ko.ss = 3
X0.90 =
Ko.93 = 11
KO.94 = 20 and
Ko.945 = 40-
K and K remain not equally well founded compared with the others.

0.94 0.945
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As a principal rule for allowing the t approximation in simple random

sampling for a 95 Z confidence interval, we propose

n> 20 ¢« G

If this rule is applied you should be able to count on being correct about
94 7Z of the time.

The values of K, are not guaranteed in the sense that no instances could be

B

found, where they are not sufficient. But in the average sense defined above

they generally hold good and they are therefore sound to use in practical work.

However, one warning is necessary to issue. The rules above are based upon
knowledge of the population skewness. It is not sufficiently known to what
extent estimates of this skewness from the sample could replace it. For
example, the sample skewness is a consistent but biased estimate of the
population skewness. The bias could be considerable precisely in those
cases where you would want to apply the sample skewness in the rules above.
Work in this area is going on at the present time and results will be

published in a forthcoming report.

What, then, are the theoretical reasons for these rules? In this area more
research is undoubtedly needed in the future. Here, let us only point out
the fact that the relevant convergence theorems and remainder term estimates
are stated in terms of the standardized third moment of the population
distribution. Therefore there is a reason to believe that two populations
with the same degree of skewness should not differ radically with respeet

to the degree of correspondence between their sampling distributions and

the t-distribution.



17

9 References

Cochran, William G., (1977), Sampling Techniques, third edition, Wiley

Erdés, P & Rényi, A, (1959), On the central limit theorem for samples from

a finite population. Publ. Math. Inst. Hung. Acad. Sci. 4, 49-57.

Hajek, J, (1960), Limiting distributions in simple random sampling from a

finite population. Publ. Math. Inst. Hung. Acad. Sci. 5, 361-374.

Hoglund, (1978), Sampling from a finite population. A remainder term estimate.

Scand J Statist 5:69-71.

Patel, J.K., Kapadia, C. H. & Owen, D.B., (1976), Handbook of statistical

distributions, Marcel Dekker, Inc.

Plane, D.R. & Gordon, K.R., (1982), A simple proof of the non-applicability
of the central limit theorem to finite populations. The American

statistician, Vol. 36, No. 3, Part 1.



1
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2.67. GH=2.73
Sample
size
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u=0.1.

Outcomes (k)

probability (ACP) for a dichotomous population.
where ka1
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N
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=1

Qutcomes (k)
where Ty

ACP

Sample
size

Outcomes (k)
k=T

where I

ACP

Table 1 (cont.)
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Table 1 (cont.)

Outcomes (k)
where Ik=1
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Table 2: Cochran type constants (Ku)

confidence intervals

leading to a certain guaranteed ACP for all n > Ka « G“ for nominal 95 %

a (%)
P N 1
85 90 93 94 94.5 7" G2
GC H GC GH GC GH GC GH GC GH GC GH
N=100, M=5  0.050 2.9 2.9
, M=10 0.100 4.2 4.0 (6.3)  (6.0) (6.8) (6.4) (6.9) (6.6) (7.00 (6.7)| 7.0 6.7
, M=15 0.150 3.1 2.8 10.2 9.0 (12.8) (11.3) (13.0) (11.5) - - 13.0  11.5
, M=20 0.200 7.1 5.5 10.7 8.3 (21.3) (16.6) (21.8) (17.0) (22.2) (17.3)| 22.2  17.3
, M=25 0.250 5.3 3.4 15.0 9.6  (36.8) (23.5) (36.8) (23.5) (36.8) (23.5)| 37.5  24.0
, M=30 0.300 7.9 3.8 15.8 7.5 446 21.2 (59.1) (28.1) (64.3) (30.6)| 65.6  31.2
, M=35 0.350 12.6 3.8 15.2 4.6 48.0  14.6 - - - - 126 38.3
, M=40  0.400 24.0 3.6 30.0 bt 174 25.7  (280) (42.6)  (280) (42.6)| 300  4k.4
, M=45  0.450 99.0 3.9 124 4.9 371 14.6 (1 064) (41.7) (1 064) (41.7)| 1 238 48.5
, M=50 0.500 4 o 8 o - o - o - % 50
N=200, M=10 0.050 3.5 3.5 (5.3)  (5.2) (5.7) (5.6) (5.8) (5.7) (5.8) (5.1)| 5.9 5.8
, M=20 0.100 4.5 4.3 8.4 8.0  (13.9) (13.3) (14.1) (13.4) (14.1) (13.8)] 14.1  13.4
, M=30 0.150 5.5 4.8 7.6 21.3  18.8  (25.5) (22.5) (25.8) (22.7)| 26.0  23.0
, M=40  0.200 4.0 3.1 11.1 8.7  33.3  26.0 (43.1) (33.6) (43.6) (33.9)] 44.4  34.6
, M=50 0.250 5.3 3.4 15.0 9.6  42.0  26.9  56.3  36.0 (75.0) (48.0) 75 48
, M=75 0.375 18.8 4.2 37.5 8.3 120 26.6 255 56.5  (371) (82.2)| 375 83
, M=100 0.500 < 4 o 1 o 31 o - o - . 100

4



Table 2 (cont.)

o (7)
p N 1
93 94 94.5 2 G2
‘e H ‘e H Sc Cy e Cy K¢ Cy ¢ Cy
N=300, M=10 0.033 3.3 3.3 (5.0)  (5.0) (5.4) (5.4) (5.4) (5.4) (5.5) (5.5) 5.5 5.5
, M=20 0.067 4.0 3.9 .5 7.4 (12.3) (12.0) (12.3) (12.1) - - 12,6 12.2
, M=30 0.100 4.5 4.3 .9 8.4 (20.5) (19.5) (21.0) (19.9) - - 21.1 20.1
, M=40 0.133 5.2 4.7  10.3 9.4 (31.2) (28.3) (31.4) (28.5) (31.4) (28.5)| 32.2  29.3
, M=50 0.167 3.4 2.9 A 8.0 28.8  24.5 (46.9) (39.9) (46.9) (39.9)| 46.9  39.9
, M=75 0.250 5.3 3.4 1.3 7.2 57.0  36.5 (112)  (71.5)  (112) (71.5) 113 72
, M=100 0.333 10.0 3.6 22.0 7.9  80.0  28.8 (258) (92.9)  (258) (92.9) 300 108
N=400, M=10 0.025 3.2 3.3 4.9) (4.9  (5.2) (5.2) (5.3) (5.3) (5.4) (5.4)| 5.4 5.4
, M=20 0.050 3.7 3.7 8.5 8.4  (11.5) (11.4) (11.7) (11.6) - - 1.7 11.6
, M=30 0.075 4.1 4.0 .1 7.9  (18.8) (18.3) (19.2) (18.7) (19.2) (18.7)| 19.2 18.7
, M=40 0.100 4.5 4.3 8.9 8.4 (27.1) (25.8) (27.3) (26.0) (27.6) (26.2)| 28.1 26.8
, M=50 0.125 5.1 4.7 .9 9.1  (32.3) (29.8) (38.9) (35.8) - - 38.9  35.8
, M=75 0.188 3.9 3.2 10.5 8.5  34.7 28.0 (77.6) (62.7) - - 78  63.0
, M=100 0.250 5.3 3.4 11.3 7.2 39.8  25.4 (127)  (81.1)  (127) (81.1) 150 96

(44



Table 2 (cont.)

a ()
p N7
85 90 93 94 9. 2 " G2
C H Sc Gy Sc Sy e Sy e Cy C¢ Gy

N=500, M=10 0.020 3.2 3.2 (4.8) (4.8) (5.1) (5.1) (5.2) (5.2) (5.3) (5.3)] 5.3 5.3
, M=20 0.040 3.6 3.6 8.3 8.2  (11.1) (11.0) (11.3) (11.3) - - 1.3 11.3

, M=30 0.060 3.9 3.9 9.1 9.0 (17.8) (17.6) (18.1) (17.8) (18.1) (17.8)| 18.2  17.9

, M=40 0.080 4.3 4.2 10.0 9.7  (22.3) (21.7) (25.5) (24.7) (25.7) (24.9)| 26.1  25.3

, M=50 0.100 4.5 4.3 10.8  10.3  26.2  24.9 - - - - 35.2  33.5

, M=75 0.150 5.7 5.0 11.2 9.9  33.1  29.2  (65.1) (57.4) (65.1) (57.4)| 65.1  57.4

, M=100 0.200 4.0 3.1 11.1 8.7  29.3  22.8  (105) (82.0) (111) (86.2)] 111  86.5
N=600, M=10 0.017 3.2 3.2 (4.8)  (4.8) (5.1) (5.1) (5.2) (5.2) (5.3) (5.3)] 5.3 5.3
, M=20 0.033 3.5 3.5 (9.3)  (9.3) (10.9) (10.8) (11.1) (11.0) - - 1.1 11.0

, M=30 0.050 3.8 3.8 8.8 8.7  (17.3) (17.1) (17.4) (17.2) (17.5) (17.3)| 17.6  17.4

, M=40 0.067 4.1 4.0 9.5 9.3  (22.6) (22.2) (24.3) (23.8) (24.6) (24.1)| 24.9  24.4

, M=50 0.083 4.3 4.2 10.2 9.9  (23.2) (22.5) - - - - 33.0  31.9

, M=75 0.125 5.1 4.7 10.1 9.3  36.8  33.9 (56.6) (52.2) (58.3) (53.8)| 58.3  53.8

, M=100 0.167 6.3 5.3 9.7 8.3  29.4  25.0  (90.9) (77.5) (90.9) (77.5)| 93.7  79.9

€C



Table 2 (cont.)

p o (%)
N 1
85 90 93 94 94,5 2 G2
C H e €y ¢ ' ‘o €y C¢ Cy Ce Cy
N=700, M=10 0.014 3.1 3.1 4.7y  G.7)  (.0) (5.0) (5.2) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.029 3.5 3.5 (9.2)  (9.2) (10.7) (10.7) - - - - 10.9 10.9
, M=30 0.043 3.7 3.7 10.0 9.9 (16.9) (16.8) (16.9) (16.8) (17.1) (17.0)| 17.2 17.0
, M=40 0.057 3.9 3.9 9.3 9.1  (21.9) (21.6) (23.6) (23.2) (23.9) (23.6)| 24.0  23.7
, M=50 0.071 4.2 4o 8.1 7.9 22.1 21.6 - - - - 31.6  30.9
, M=75 0.107 4.8 4.5 9.5 8.9  32.7  30.9 (46.6) (44.0) - - 54,2  51.2
, M=100 0.143 5.5 4.9 8.6 7.7 28.6 25.6 67.7  60.6 (83.5) (74.7)| 84.0  75.2
N=800, M=10 0.013 3.1 3.1 (4.7)  (&.7)  (5.0)  (5.0) (5.1) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.025 3.4 3.4 9.1 9.1  (10.6) (10.6) - - - - 10.8 10.8
, M=30 0.038 3.6 3.6 9.8 9.8 (16.6) (16.5) (16.7) (16.6) (16.8) (16.7)| 16.9 16.8
, M=40 0.050 3.8 3.8 9.0 8.9  (21.4) (21.2) (23.1) (22.8) (23.3) (23.1)] 23.5  23.2
, M=50 0.063 4.0 3.9 9.4 9.3 24.1 23.7 - - - - 30.6  30.1
, M=75 0.094 4.5 4.3 9.0 8.6  30.9  29.6 (51.5) (49.3) - - 51.5  49.3
, M=100 0.125 5.1 4.7 10.1 9.3 30.1 27.8  59.5  54.8 - - 77.8  71.7

kL4



Table 2 (cont.)

a (%)
P N 1
85 90 93 94 94, 2 " G2
GC H GC H GC GH GC GH GC GH GC GH

'N=900, M=10 0.011 3.1 3.1 .7y &.7)  (5.00  (5.0)  (5.1) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.022 3.4 3.4 (9.0) (9.0) (10.5) (10.5) - - - - 10.7 10.7

, M=30 0.033 3.6 3.6 9.7 9.7 (16.4) (16.3) (16.5) (16.4) (16.6) (16.5)| 16.6 16.6

, M=40 0.044 3.8 3.8 8.8 8.7 (22.2) (22.0) (22.7) (22.5) (23.0) (22.8)| 23.0  22.8

, M=50 0.056 3.9 3.9 9.2 9.0  (24.8) (24.5) - - - - 29.9  29.5

, M=75 0.083 4.3 4.2 8.7 8.4  28.3  27.4 - - - - 49.5  47.9

, M=100 0.111 4.9 4.6 9.6 9.1 35.3  33.1  (73.0) (68.6) (73.5) (69.0)| 73.5  69.0

N=1 000, M=10 0.010 3.1 3.1 4.7) .70 (5.00  (5.0) (5.1) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.020 3.4 3.4 (9.0)  (9.0) (10.4) (10.4) - - - - 10.6 10.6

, M=30 0.030 3.6 3.5 .6 9.6  (16.2) (16.1) (16.3) (16.2) (16.5) (16.4)| 16.5 16.4

, M=40 0.040 3.7 3.7 8.6 8.6 (21.9) (21.8) (22.3) (22.2) (22.7) (22.5)| 22.7  22.5

, M=50 0.050 3.9 3.8 .0 8.9 (26.9) (26.6) - - - - 29.3 29.0

, M=75 0.075 4.2 4.1 10.0 9.7  35.9  35.0 - - - - 48.0  46.8

, M=1000.100 4.6 ANA 9.3 8.8  32.1 30.5 (70.2) (66.8) (70.2) (66.8)| 70.3  66.9

S¢



Table 3: CochFan typg constants (KB) leading to a certain average ACP for all n > KB G2 for nominal 95 ¢
confidence intervals
> [ —
85 90 94 94.5 2" G2
GC GH GC GH GC GH GC GH GC GH GC GH
N=100, M=5 0.050 1.8 1.8 2.2 2.2 - - - - - 2.9 .9
, M=10 0.100 2.4 2.3 2.8 2.7 (6.8) (6.4) (6.9) (6.6) (7.0) 6.7) 7.0 6.7
, M=15 0.150 3.1 2.8 3.6 3.2 6.5 5.8 (13.0) (11.5) - 13.0 1.5
, M=20 0.200 4.0 3.1 4.4 3.5 8.9 6.9 14.7 11.4 (22.2) (17.3) 22.2 17.3
, M=25 0.250 5.3 3.4 6.0 3.8 7.5 4.8 19.5 12.5 (33.8) (21.6) 37.5 24.0
, M=30 0.300 7.9 3.8 9.2 4.4 10.5 5.0 18.4 8.7 24 .9 11.9 65.6 31.2
, M=35 0.350 12.6 3.8 15.2 4.6 17.7 5.4 17.7 5.4 50.6 15.3 126 38.3
,» M=40 0.400 24.0 3.6 30.0 4.4 42.0 6.2 42.0 6.2 84.0 12.4 300 44 4
,» M=45 0.450 99.0 3.9 124 4.9 124 4.9 149 5.8 446 17.5 1 238 48.5
, M=50 0.500 o 4 0 5 0 5 oo 11 S 11 ® 50
N=200, M=10 0.050 2. 2.0 3.9 3.9 (5.7) (5.6) (5.8) (5.7) (5.8) (5.7) 5.9 5.8
, M=20 0.100 2.5 2.4 5.1 4.8 9.1) (8.7) (12.5) (11.9) (14.1) (13.4) 14,1 13.4
,» M=30 0.150 3.1 2.8 3.6 3.2 9.4 8.3 18.0 15.9 (25.8) (22.7) 26.0 23.0
, M=40 0.200 4.0 3.1 4.9 3.8 8.9 6.9 20.9 16.3 31.1 24,2 44 .4 34.6
» M=50 0.250 5.3 3.4 6.0 3.8 16.5 10.6 21.0 13.4 36.8 23.5 75 48
y» M=75 0.375 18.8 4.2 18.8 4.2 26.3 5.8 56.3 12.5 93.8 20.8 375 83.0
, M=100 0.500 4 o 5 o 5 B 11 o 14 S 100
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Table 3 (cont.)

B (7)
P N 1
90 93 94 94.5 2 " G2
GC H C H GC GH GC GH GC GH GC GH
_N=300, M=10 0.033 1.9 1.9 3.7 3.7 (5.4) (5.4) (5.4) (5.4) (5.5) (5.5) 5.5 5.5
, M=20 0.067 2.2 2.2 4.5 4.4 8.2 8.0 (12.3) (12.1) - -~ 12.4 12.2
, M=30 0.100 2.5 2.4 3.1 2.9 9.4 9.0 (18.0) (17.1) - - 21.1 20.1
, M=40 0.133 3.0 2.7 3.4 3.1 9.0 8.2 19.1 17.4  24.9 22.7 | 32.2  29.3
, M=50 0.167 3.4 2.9 41 3.5  10.3 8.8 18.1 15.4  33.8  28.8 | 46.9  39.9
, M=75 0.250 5.3 3.4 6. 4.3 12.0 7.7 25.5  16.3  25.5 16.3 113 72
, M=100 0.333 10.0 3.6 4, 5.0 14.0 5.0  42.0  15.1  44.0 15.8 300 108
N=400, M=10 0.025 1.9 1.9 3.7 3.6 (5.2) (5.2)  (5.3) (5.3) (5.4) (5.4)| 5.4 5.4
, M=20 0.050 2.1 2.1 4.2 4.2 9.0 8.9 (11.7) (11.6) - - 11.7 11.6
, M=30 0.075 2.3 2.2 4.7 4.6  10.4 10.1  (16.5) (16.1) (19.2) (18.7)| 19.2 18.7
, M=40 0.100 2.5 2.4 5.2 5.0 9.7 9.2 15.1 14.3  (26.2) (24.9)| 28.1 26.8
, M=50 0.125 2.9 2.7 3.5 3.2 10.9 10.0  19.1 17.6  27.8  25.6 | 38.9  35.8
, M=75 0.188 3.9 3.2 4.7 3.8 11.7 9.5  17.6 4.2 35.5  28.7 78  63.0
, M=100 0.250 5.3 3.4 6.8 4.3 12.0 7.7 25.5  16.3  40.5  25.9 150 96
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Table 3 (cont.)

B (%)
p N1
85 90 93 94 94.5 2 " g2
GC GC GH GC GH GC GH GC GH GC GH
N=500, M=10 0.020 1.8 1.8 3.6 3.6 (5.1)  (5.1)  (5.2)  (5.2) (5.3) (5.3) 5.3 5.3
, M=20 0.040 3 g 2.0 4.1 41 8.7 8.6 (11.3) (11.3) - - 11.3 1.3
, M=30 0.060 3 > 2.2 4.5 4.4 9.7 9.5 15.5 15.3  (18.1) (17.8)| 18.2 17.9
, M=40 0.080 9 4 2.3 4.9 4.8 9.1 8.8 17.3 16.8  (25.7) (24.9)| 26.1 25.3
, M=50 0.100 3 5 2.4 5.3 5.1 11.5 11.0  20.4 19.4  (30.0) (28.5)] 35.2  33.5
, M=75 0.150 3 4 2.8 3.9 3.5 12,2 10.8  21.1 18.6  35.9  31.7 | 65.1 57.4
, M=100 0:200 4 ¢ 3.1 4.9 3.8 12.4 9.7  21.8 17.0  31.1 24.2 111 86.5
N=600, M=10 0.017 1.8 1.8 3.6 3.6 (5.1)  (5.1)  (5.2) (5.2) (5.3) (5.3)| 5.3 5.3
, M=20 0.033 2.0 2.0 4.0 4.0 8.5 8.5 (11.1) (11.0) - - 1.1 11.0
, M=30 0.050 2.2 2.2 A 4.4 9.3 9.2 (15.0) (14.8) (17.5) (17.3)| 17.6 17.4
, M=40 0.067 2.2 2.2 4.6 4.6 10.1 9.9 16.3 16.0  (24.6) (24.1)| 24.9  24.4
, M=50 0.083 2.4 2.3 5.0 4.8 9.1 8.8 20.7 20.0 (31.0) (30.0)| 33.0  31.9
,M=75 0.125 2.9 2.7 3.5 3.2 10.9 10.0  17.3 16.0 33.8 31.2 | 58.3  53.8
, M=100 0.167 3.4 2.9 4.1 3.5 13.4 11.5  20.9 17.8  37.2  31.7 | 93.7  79.9
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Table 3 (cont.)

> [BZ) —
90 93 94 94.5 2 " G2
GC H GC GH GC GH GC GH GC GH GC GH

N=700, M=10 0.014 1.8 1.8 3.6 3.6 (5.0)  (5.0) (5.2) (5.1) (5.2) (5.1) 5.2 5.2
, M=20 0.029 2.0 2.0 4.0 4.0 8.4 8.3 - - - - 10.9 10.9
, M=30 0.043 2.1 2.1 4.2 4.2 9.1 9.1  (14.5) (14.4) (17.1) (17.0)| 17.2 17.0
, M=40 0.057 2.2 2.2 4.5 4.4 9.8 9.7 17.0 16.8 (23.9) (23.6)| 24.0  23.7
, M=50 0.071 2.4 2.3 4.7 4.6 10.5 10.2 18.5 18.1  (29.6) (28.9)| 31.6 30.9
, M=75 0.107 2.6 2.5 3.3 3.1 12.2 1.6 19.5 18.4  33.2 31.3 54.2  51.2
, M=100 0.143 3.1 2.8 3.6 3.2 9.4 8.4 18.7 16.8 33.1 29.6 | 84.0 75.2

N=800, M=10 0.013 1.8 1.8 3.5 3.5 (5.0)  (5.0)  (5.1) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.025 1.9 1. 3.9 3.9 8.3 8.3 - - - - 10.8 10.8
, M=30 0.038 2.1 2.1 4.2 4.2 9.0 8.9 (15.5) (15.4) (16.8) (16.7)| 16.9 16.8
, M=40 0.050 2.2 A A 11.0 10.9 15.3 15.1  (23.3) (23.1)] 23.5 23.2
, M=50 0.063 2.2 4.6 4.5 10.3 10.1 19.1 18.7 (28.6) (28.1)| 30.6 30.1
, M=75 0.094 2.6 5.2 4.9 9.7 9.3 18.5 17.8 34.8  33.3 51.5  49.3
, M=100 0.125 2.9 3.5 3.2 13.2 2.2 21.2 19.5  34.6 31.9 77.8 71.7
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Table 3 (cont.)

b %B (%) —
' 85 90 93 94 94.5 2 " G2

r Sc H C H Cc Cy ;e Sy ¢ Gy ‘o Gy
N=900, M=10 0.011 1.8 1.8 3.5 3.5 (5.0)  (5.0) (5.1) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.022 1.9 1.9 3.9 3.9 ) 8.2 - - - - 10.7 10.7
, M=30 0.033 2.0 2.0 4.1 4.1 .9 8.8 (15.3) (15.2) (16.6) (16.5)| 16.6 16 .6
, M=40 0.044 2.1 2.1 4.3 4.3 .5 9.4 16.4 16.2  (23.0) (22.8)| 23.0 22.8
, M=50 0.056 2.2 2.2 4.5 4.5 10.0 9.9 17.4 17.2 (27.9) (27.5)| 29.9 29.5
, M=75 0.083 2.4 2.3 5.0 4.8 11.0 10.6 19.7 19.1 34.5 33.4 49.5 47.9
, M=100 0.111 2.8 2.6 3.3 3.1 12.4 11.7 22.2 20.9 40.7 38.2 73.5 69.0
N=1 000, M=10 0.010 1.8 1.8 3. 3.5 (5.0)  (5.0) (5.1) (5.1) (5.2) (5.2) 5.2 5.2
, M=20 0.020 1.9 1.9 3.9 3.9 8.2 8.2 - - - - 10.6 10.6
» M=30 0.030 2.0 2.0 4.1 4.0 8.8 8.8 (14.0) (13.9) (16.5) (16.4)| 16.5 16.4
, M=40 0.040 2.1 2.1 4.3 4.2 9.4 9.3 16.2 16.0  (22.7) (22.5)| 22.7 22.5
, M=50 0.050 2.2 2.2 A 4.4 9.8 9.7 17.1 16.9  (27.3) (27.0)| 29.3 29.0
, M=75 0.075 2.4 2.3 4.8 4.7 10.7 10.4 20.5 19.9 32.2 31.3 48.0 46 .8
, M=1000.100 2.5 2.4 3.1 2.9 10.0 9.5 21.1 20.1 36.1 34 .4 70.3 66.9
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Table 4:

ACPs for some populations and sample sizes when N=10 000. Normal approximation is used.

M=
n = s & 0 &Y o500 K)o oyo0 K o090 Ky 550 Ky o000 K& 2000 K& so00 K
10 0.5 1.0 4.9 9.6 18.3 40.0 65.0 88.6 (3.5) 89.1 (10)
50 2.5 4.9 22.2 39.6 63.6 92.0 (2.9) 88.0 (6.7) 93.8 (17.3) 93.6 (50)
100 4.9 9.6 39.6 63.5 86.8 (2.1) 87.9 (5.8) 93.4 (13.4) 93.4 (34.6) 94.4
300 14.1 26.3 78.2 80.4 (3.1) 93.5 (6.4) 92.9 94.1 (40.2) 95.0 94.7
500 22.6 40.1 92.0 (2.6) 87.9 (5.2) 92.8 (10.6) 93.8 (29) 94.9 94.6 95.2
1 000 41.0 65.1 88.6 (5.1) 93.4 (10.3) 93.6 (21.2) 94.9 (58) 95.2 94.9
2 000 67.2 89.2 (2) 94.6 (10.2) 94.3 (20.6) 94.4 94.6 94.9 95.1
3 000 83.2 84.9 94.8 9.1 94.6 94.8 94.9 95.0
4 000 92.2 (2) 95.2 93.9 (20.4) 94.5 (41.2) 94.9 94 .4 94.7 95.0
5 000 81.3 9%.4 (5) 95.2 93.9 94 .4 95.1 95.0 94.9
Skewness (G) 44.7 31.6 14.0 9.8 6.9 4.1 2.7 1.5 0
Skewness (G.) 44.7 31.6 14.0 9.9 6.9 4.2 2.7 1.7 1
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Table 5: ACPs for some populations and sample sizes when N=100 000. Normal approximation is used.
M =
n = 10 % 50 & o100 ®) 500 K oq000 K 2000 KW sooo Kw) 10000 ) 20000 K
10 0.1 0.5 1.0 4.9 9.6 18.3 40.0 65.0 88.6 (3.5)
50 0.5 2.5 4.9 22.2 39.5 63.5 92.0 (2.9) 87.9 (6.7) 93.8 (17.3)
100 1.0 4.9 9.5 39.4 63.4 86.7 (2.1) 87.8 (5.8) 93.3 (13.4) 93.3 (34.6)
300 3.0 14.0 26.0 77.7 79.9  (3.1) 93.2 (6.4) 92.6 93.8 (40.2) 94.7
500 4.9 22.2 39.4 91.5 (2.6) 87.2 (5.2) 92.9 (10.6) 93.2 (29) 94.3 94.9
1 000 9.6 39.5 63.4 87.2  (5.1) 92.8 (10.3) 92.4 (21.2) 94.3 (58) 95.4 94.8
2 000 18.3 63.5 86.7  (2) 92.9 (10.2) 92.4 (20.6) 94.7 (42.4) 94.9 94.9 94.8
3 000 26.3 78.1 80.2 92.4 93.6 95.0 94.8 95.1 95.1
4 000 33.5 86.9  (2) 91.1 92.6 (20.4) 94.9 (41.2) 94.7 94.8 94.7 94.9
5 000 40.1 92.0 87.8  (5) 93.2 94.3 94.9 94.9 95.0 95.0
10 000 65.1 88.5 (5) 93.3 (10) 94.3  (51)  94.6
20 000 89.2 (2) 94.6 (10) 94.2 (20) 95.4 95.2
50 000 94.4 (5) 95.1 (25) 93.8 (50) 94.5 94.7
Skewness (G,) 100.0 44,7 31.6 14.0 9.8 6.9 4.1 2.7 1.5
Skewness (GH) 100.0 44.7 31.6 14.0 6.9 4,2 2.7 1.7




Table 6:
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ACPs when N=8 000 000 and M=80 000 for some sample sizes G ~G,, = 9.85.

(Normal approximation is used.) i
Outcomes Outcomes Outcomes
0 ACP where I, =1 n ACP where Ty =1 n ACP where Iy =1
50 39.5 1-4 1 750 92.0 12-27 3 450 94.6 25-47
100 63.3 1-5 1 800 93.6 12-28 3 500 93.8 26-48
150 77.8 1-6 1 850 94.3 12-28 3 550 94.8 26-49
200 86.5 1-7 1 900 92.9 13-29 3 600 93.4 27-49
250 91.5 1-7 1 950 94.3 13-30 3 650 94.4 27-50
300 79.9 2-8 2 000 94.9 13-30 3 700 94;8 27-50
350 86.2 2-9 2 050 93.6 14-31 3 750 94.1 28-51
400 90.7 2-10 2 100 94.8 14-32 3 800 95.0 28-52
450 93.3 2-10 2 150 93.0 15-32 3 850 93.8 29-52
500 87.1 3-11 2 200 94.3 15-33 3 900 94.7 29-53
550 90.8 3-12 2 250 94.8 15-33 3950 95.0 29-53
600 93.0 3-12 2 300 93.7 16-34 4 000 94.4 30-54
650 88.3 4-13 2 350 94.9 16-35 4 050 94.7 30-54
700 91.4 4-14 2 400 93.2 17-35 4 100 94.1 31-55
750 93.7 4-15 2 450 94.4 17-36 4 150 95.0 31-56
800 89.4 5-15 2 500 94.9 17-36 4 200 93.8 32-56
850 92.0 5-16 2 550 93.9 18-37 4 250 94.7 32-57
900 94.1 5-17 2 600 94.4 18-37 4 300 95.0 32-57
950 90.4 6-17 2 650 93.4 19-38 4 350 94.4 33-58
1 000 92.7 6-18 2 700 94.5 19-39 4 400 94.7 33-58
1 050 93.9 6-18 2 750 95.0 19-39 4 450 94.1 34-59
1 100 91.3 7-19 2 800 94.1 20-40 4 500 95.0 34-60
1 150 93.3 7-20 2 850 94.6 20-40 4 550 93.8 35-60
1 200 94.4 7-20 2 900 93.7 21-41 4 600 94.7 35-61
1250 92.2 8-21 2 950 94.7 21-42 4 650 95.0 35-61
1 300 94.0 8-22 3 000 93.2 22-42 4 700 94.4 36-62
1 350 94.8 8-22 3 050 94.3 22-43 4 750 94.7 36~62
1 400 93.0 9-23 3 100 94.7 22-43 4 800 94.2 37-63
1 450 94.5 9-24 3 150 93.9 23-44 4 850 95.0 37-64
1 500 92.0 10-24 3 200 94.9 23-45 4 900 93.9 38-64
1 550 93.7 10-25 3 250 93.5 24-45 4 950 94.7 38-65
1 600 94.5 10-25 3 300 94.5 24-46 5 000 95.0 38-65
1 650 92.9 11-26 3 350 94.9 24-46 5 050 94.5 39-66
1 700 94.3 11-27 3 400 94.2 25-47 5 100 94.8 39-66
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Table 6 (cont.)

Outcomes
n ACP where ka1

150 94.3 40-67
200 95.0 40-68
250 94.0 41-68
300 94.8 41-69
350 93.8 42-69
400 94.6 42-70
450 94.8 42-70

500 94.4 43-71
550 95.1 43-72
600 94.2 44-72
650 94.9 44-73
700 93.9 45-73
750 94.7 45-74
800 94.9 45-74
950 94.3 47-76
000 95.0 47-77
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Table 7: Simulations from populations based on the beta distribution.
, b=1/a=1 b=1/a=1.756 b=1/a=2.390 b=1/a=4.083 b=1/a=6.16 b=1/a=8.509
5 = = = = ‘ = =
i GH 1.299 GH 1.592 GH 1.978 GH 2.946 GH 3.882 GH 4.714
K B(7%)
n n n n n n
GC =90 GC = 1.000 GC = 1.598 GC = 2,767 Gc = 3.780 GC = 4,647
3 85 94.2 6 90.2 8 90.9 12 89.8 27 88.5 46  89.3 67
5 90 94.6 9 92.6 13 90.9 20 90.9 44 91.7 76 91.6 112
1 93 94.8 19 93.7 28 93.3 44 94 .1 96 94.2 166 94.6 245
*
20 94 95.1 34 95.5 51 93.9 79 94.5 174

40 94.5 94.7 68 95.0 102 94.6 157
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Table 8: Simulations from populations based on the lognormal distribution.
B 0=0.1 0=0.4 0=0.72 0=0.92 0=1.06 o=1.3
N GH=1.597 GH=1.982 GH=2.943 GH=3.883 GH=4.695 GH=6.331
K B(%)
n n n n n n
GC=O.220 GC=1.25 GC=2.577 GC=3.654 GC=4.533 GC=6.243
3 85 95.9 8 92.7 12 92.1 26 89.6 46 90.6 67 89.5 121
5 90 94.7 13 93.6 20 91.4 44 92.8 76 91.8 111 91.7 201
11 93 95.9 28 95.6 44 94.4 96 95.2 166 94.5 243
*
20 94 94.8 51 95.5 79 93.9 174
40 94.5 95.4 102 96.2 158
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Table 9: Simulations from populations based on the power function distribution
e e
. P g1 o g2 -t wh- g0
n n n n n n
GC=1.117 GC=1.702 GC=2.829 GC=3.820 GC=4.663 GC=6.304
3 85 89.6 8 88.5 12 87.7 26 88.8 46 87.0 67 88.2 120
5 90 92.3 13 91.0 20 91.1 44 92.0 76 92.0 111 90.9 200
" 93 93.7 28 93.3 44 93.1 96 92.9 166 94.9 243
20 94 94.0 51 95.0 79 94.5 173
40 94.5 94.7 102 95.1 157
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Table 10: Simulations from populations based on the Weibull distribution.
C=2.15 C=1.24 C=0.795 C=0.615 C=0.53 C=0.425
/5 GH=1.585 GH=1.984 GH=2.923 GH=3.967 GH=4.831 GH=6.554
K B(%)
n n n n n n
GC=O.528 GC=1.406 GC=2.645 GC=3.809 GC=4.724 GC=6.499
3 85 94.4 8 92.8 12 90.7 26 90.4 48 88.9 71 91.0 129
5 90 94.1 13 93.8 20 92.0 43 92.0 79 91.6 117 91.0 215
11 93 95.0 28 94.3 44 93.8 94 93.2 174
*
20 94 94.5 51 93.7 79 95.3 171
*
40 94.5 95.2 101 94.1 158
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