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ABSTRACT 

This paper examines two families of inequality parameters, frequently 

used as measures of income inequality, viz. the GIni family and the 

Generalized Entropy family. Computations In total surveys and estimation 

in sample surveys are discussed. The estimation procedures are made 

both under a fix population approach and under an auxiliary model 

approach. Various variance estimators are discussed and for the Gini 

coefficient the sampling distributions of the point estimator and the 

variance estimators from two small populations are compared. 
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1 INTRODUCTION 

When describing a set of data - or comparing two or more data sets 

- the variance is the most frequently used measure of dispersion. 

Another way of describing variability has emerged from studies of 

the size distribution of income. In the case of income data, dispersion 

is often interpreted as reflecting "income inequality" and in order 

to assess its magnitude particular measures ("measures of income 

inequality") have been derived from assumptions ("criteria") on how 

a measure should respond to specific changes in the income distribu­

tion. An example of such a measure of income inequality is the well-

known Gini coefficient. 

These dispersion measures will here be called inequality parameters 

to point out that their field of application is not only restricted 

to income distributions. In fact, applications to e.g. trading balance, 

unemployment, consumption, and residential density are found in the 

literature and, in general, inequality parameters may be calculated 

for any quantitative data set. 

In this paper we show how some commonly used inequality parameters 

may be computed in total surveys and estimated in sample surveys. 

To be more specific, we focus on two families of inequality parameters, 

viz. the Gini and the Generalized Entropy families. 

The paper is organized in the following way: The inequality parameters 

are defined in Section 2 using statistical functionals. In Section 3 

we discuss parameter computation in total surveys based on complete 
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or grouped data. Estimators, and variance estimators, based on probabili­

ty samples are discussed in Section 4. In the Appendix the variance 

estimators are compared for the Gini coefficient under a simple random 

sampling design. 

2 INEQUALITY PARAMETERS 

In this section we will pick up two frequently used classes of inequality 

parameters and give their formal definitions by use of a functional 

approach. The first class is choosen because its relation to the well-

known Lorenz Curve (LC). The area between the LC and the diagonal 

line in a Lorenz diagram is oftenly used as a measure of income inequality. 

This first class is defined as a weighted Lorenz area and will be 

called the Gini family, because it includes the Gini coefficient of 

income inequality as a member. The second class of parameters is the 

Generalized Entropy family, which is choosen because it has been proved 

that the members of this family are the only parameters that fulfill 

some special criteria imposed on inequality measures, see e.g. Cowell 

(1980), and that these members are the only parameters that can be 

decomposed in accordance with the proposals given by Shorrocks (1980), 

(1983). 

2.1 Definitions by a functional approach 

In defining the two families of inequality parameters it will prove 

convenient to represent all parameters as statistical functional 

(or ratios of statistical functionals) by use of the Lebesgue-Stiltjes 

integral. Let the variate Y have a distribution function (df) Fy(y) 

with E(Y) = nY + 0, < co. in terms of a statistical functional m, can 

be written as 
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(2.1) 

In a total survey of a finite population, cf. Section 3, with the 

finite population df F.., (2.1) becomes 

(2.2) 

and an estimate of (2.2) based on a sample survey is obtained by (i) 

estimating F., and (ii) changing FN for its estimate, say FN, i.e. 

(2.3) 

The last procedure is discussed in Section 4. 

The inequality parameters that we will discuss here are all relative 

measures of dispersion, i.e. they are scale invariant. The two families 

of parameters that we consider are 

+ the Gini family: 

(2.4) 

CO 

where TG(F) = /J(F(y))ydF(y) 
— CO 

and J(.) is a smooth function. 
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+ the Generalized Entropy family: 

with the limiting value, see e.g. Shorrocks (1982), when 

The J(') - function of the Gini family is sometimes referred to as 

a weight function since the parameters of this family may be interpreted 

as weighted Lorenz areas. 

In Table 2.1 some examples of parameters belonging to the above families 

are given. 

Table 2.1 in here 

Since the main objective of this report is on estimation we have no 

intention to discuss the relevance of any members of the two families. 

That is a question for the user of income inequality measures. 

2.2 Some useful results 

The following two propositions can prove helpful when analysing inequality 

parameters, e.g. in variance estimation. The reformulations of the 

parameters proposed here assume that F is continuous. 
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PROPOSITION 2.1 Assume F to be continuous and let W(-) be 
1 . 

a monotone non-decreasing function and assume J|W(p)F~ (p)|dp to exist, 

1 1^ 
where F"'(p) = inf lx|F(x)>p}, 0<p£1, and F"'(0) = inf{ x|F(x)>0 } . 

x 1 x 
If we assume that Jw(p)dp <«> then 

0 

(2.6) 

The proof follows by changing order of integration in the first term on 

the right hand side. 

REMARK 2.1 If W(-) is monotone non-increasing the Proposition is valid 

if we change sign on the right hand sid of (2.6). 

REMARK 2.2 Note the following special cases of the Proposition: 

i) W(p) = c, constant, is trivial. 

is the symmetric kernel corresponding to the 

U-statistic equal to the sample variance. 
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iii) The central moment \i. can by (2.6) be written as 

i v) If W(p) is the function corresponding to a linear function of orde 

statistic, usually denoted J(p), then (2.6) is obvious. 

If W(p) = J(p) as in Remark 2.2 iv) and J(p) is a power function then the 

following Proposition can be used to rewrite jJ(p)F~ (p)dp. 

0 

PROPOSITION 2.2 Let J(p) be a power function in ps power r _> 1, and assume 

1 1 i 
/|J(p)F (p)|dp to exist, where F is continuous and F is 
0 

defined as in Proposition 2.1. Then 

(2.7a) 

where Dtp) is a function in p of power r-1 and the following relation 

between J(p) and D(p) holds 

J'(p) = (2p-1)D'(p) + 4D(p). (2.7b) 

The proof is straightforward. 

REMARK 2.3 The parameters belonging to the Gini family can either be 

rewritten according to (2.6) or to (2.7a). As an example, take the 

Gini coefficient where J(p) = 2p-1. Then by (2.6) we have, since 
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which gives, by (2.7a), 

In Table 2.2 the parameters of Table 2.1 are rewritten according to 

Propositions 2.1 and 2.2. 

Table 2.2 in here 

3 TOTAL SURVEYS 

3.1 Calculations in Total Surveys 

The computation of the inequality parameter in a finite population is,in 

view of the functional approach, straightforward. The finite population 

df FN is defined as 

where I, ,is the indicator function taking on the value 1 when the 

event {•} occure and the value 0 otherwise. 

REMARK 3.1 The data set in the finite population, yN = (y1,...,yN), 

is a fixed vector. 

REMARK 3.2 If the observations in yN are arranged in non-decreasing 

order, i.e. y(1)-y! Y/oyi Vin) then we can wr''te (3-1) as 
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Both this definition and (3.1) include the possibility of ties. 

The arithmetic mean in the finite population is given by (2.2). If there 

is H'<H distinct values of y then we define the probability function 

at y^j as 

(3.2) 

With use of (3.2) we get 

The Gini family is defined by Ip(FN) = T^F-J/T (FN), 

where 

(3.3a) 

and if no tied y-values are present we can rewrite (3.3a) as a linear 

function of the ordered data set (with use of F..(-) given in Remark 3.2) 

(3.3b) 

so the computation is straightforward when the observations are rank-

ordered. 
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REMARK 3.3 The weight function for the finite population Gini coefficient 

is according to Table 2.1, for (3.3a) J(F (y.)) = 2F..(y.) - 1 

and for (3.3b) 2-i- - 1. For a non-negative variate R e. [l/N,1 ] . 

The usual definition found in the literature, cf. e.g. Nygård 

and Sandström (1981), is based on Proposition 2.2. With use of 

the result in Remark 2.3 the J-function corresponding to (3.3a) 

will be 2FN(y.) - 1 - fN(yi), where f^y.) is defined by (3.2). 

i 1 1 

In the case of rank-ordered data we get 2̂ - - 1 -jr. The term - -rr 

will be called the Gini finite population correction (Gfpc). In 

the non-negative case with R.. including the Gfpc-term we have 

RN£[0,1 - TT ]. There are at least three reasons for making this 

correction, viz. i) the lower bound of the parameter is zero 

for non-negative data (the RANGE criterion in e.g. Nygård and 

Sandström (1981)), ii) the REPLIC criterion is fulfilled, cf. 

op. cit., and iii) the bias in the sample estimator T„(FN) is 

decreased. 

In the sequel we will use finite population corrected parameters of 

the Gini family, see Remark 3.3. In Table 3.1 explicit expressions 

for some members belonging to the Gini family are given and in Table 

3.2 we have explicit expressions for parameters of the Generalized 

Entropy family. 

Table 3.1 in here 

Table 3.2 in here 
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3.2 Calculations from grouped data 

In practice we frequently have to deal with situations in which we 

- instead of having access to the complete data - are provided only 

with data in condensed form (frequency tables etc.). 

In this section we address the problem of how to calculate parameters 

of the Gini and Generalized Entropy family in these cases. 

One method of calculating parameters from grouped data starts out 

from some specific assumption regarding the behaviour of the distribution 

function FN(y) within the different groups - a vast amount of suggestions 

are found in the literature (for references see e.g. Nygård and Sandström 

(1981), p.113, Dagum (1983), MacDonald (1984). According to other 

related methods the parameter calculation is based on some interpolation/ 

extrapolation technique (cf. Gastwirth and Glauberman (1976), Kakwani 

(1980), Cowell and Mehta (1982)). 

In contrast to these methods, the approach reported in this section 

is basically 'non-parametric' (cf. Gastwirth (1975) ) in that it provides 

lower and upper bounds for the parameter value inherent in the population 

without any distributional assumptions on the complete data. 

We start out by assuming that the available information about the 

distribution is given in a frequency table with the range divided 

into k intervals with boundaries 

] a.j_.j, a.j], a.._.| < a., i=1,...,k, where aQ _> 0 and a. < . 

Let N. and y. denote the frequency and mean respectively, within group 

i, i=1,...,k, I. N. = N, I. N.y. = NyN. 
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In this situation the standard textbook method of calculating the 

Gini and Entropy parameters of Table 3.1 and 3.2 substitutes the group 

means y. into the calculation formulas - implicitly assuming that 

all observations within each group equal the group mean. Actually, 

this is in a very precise sence a sound procedure, since it may readily 

be seen that substitution of group means into the complete data formulas 

minimizes the Gini and Entropy parameters subject to the restriction 

of fixed means. As a consequence, the resulting parameter values are 

negatively biased as the corresponding complete data parameter in 

general will exceed the calculated value. An upper bound for this 

bias may be found by maximization of the parameter values subject 

to given group means and boundaries. It turns out (cf. Gastwirth (1975)) 

that the maximum is obtained by placing (1-\.)N. of the observations 

in group i at the lower boundary a. 1 and the remaining x.H. observations 

at the upper boundary a., where 

is derived from the restriction of a fixed group mean. 

REMARK 3.4 That the minimum parameter value occurs when all observations 

equal the group mean and the maximum value when the observations 

are placed at the group boundaries is actually an immediate con­

sequence of the fact that the parameters under consideration 

satisfy the principle of transfers i.e. the parameter value increases 

if an amount A > 0 is "transfered" from y to y , y <_ y . 

Formulas for the lower bound and maximum bias, which added to the 

lower bound gives the upper bound, are presented in Table 3.3 for 

the Gini and Generalized Entropy parameters. 

Table 3-3 in here 
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REMARK 3.5 Note that lower parameter bounds in the case of 

a decile type frequency table with N. = N/k, i=1,...,k, simply 

are obtained by substituting k for N and y. for y. in the complete 

data formulas. 

REMARK 3.6 Upper bounds for the parameters of the Gini family may 

also be derived in the case of unknown boundary points, a., i=1,...,k. 

See Mehran (1975), Nygård and Sandström (1981). 

REMARK 3.7 The parameter bounds may readily be sharpened by introducing 

additional assumptions on the distribution within the separate groups. 

See e.g. Gastwirth (1972), (1975) for an application to the case 

when data has a decreasing density in some interval. 

REMARK 3.8 Upper and lower parameter bounds may also prove useful 

when considering optional boundary points for data presentation. 

Optimal methods for grouping, when the purpose is to calculate 

parameters of the Gini family, are found in Aghevli and Mehran 

(1981) . 

REMARK 3.9 Note that the 'non-parametric' parameter bounds derived 

from grouped data not should be confused with 'confidence' statements 

about the true parameter value when data is obtained through 

sampling. The sampling case, in which the expressions of Table 

3.3 give bounds on the parameter estimator, will be addressed 

in Section 4. See also Beach and Davidson (1983) for a discussion 

of the estimation problem when only grouped sample data is available. 



13 

4 SAMPLE SURVEYS 

4.1 The fix population approach 

Assume a finite and identifiable population of size N. The identifiability 

assumption makes it possible to uniquely label the population units 

from 1 to N. We also assume that the label of each unit is known, 

which implies that we can define a label set U = {1,2,...,N} of the 

population universe. With the jth unit, j£ll, we associate some number 

y., which can be seen as a reslut of measuring unit j (the y. can 
J J 

be a vector of numbers). 

A sample s is a subset of U, i.e. s = {j.|j.eU, i=1,2,...,n(s)} , 

where n(s) is the sample size which may depend on s. A sampling experiment 

will yield a sample scU according to a probability distribution P(s), 

where P(s) denotes the probability with which s is choosen and observed. 

{P(s), S ^ U } is called the sampling design (plan). In the sequel we 

only consider fixed size designs, i.e. n(s) = n, where the sampling 

procedure is taken without replacement, f = n/N is called the sampling 

fraction, 0 < f < 1 (f = 1 implies a total survey, see Section 3). 

The inclusion probability of first order of unit i is defined as 

%. = P(i^s) and the second-order inclusion probability of units i 

and j as %.. = P(i,jé:s), i ? j. Higher order inclusion probabilities 

can be defined in a similar way. For a fixed size design \ n- = n. 
ieU ] 

Let us define the inclusion indicator, which we will have much use of, 

as 

(4.1) 
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n 
If we are summing over the sample s we write either £ or £ depending 

i£s i=l 
on the situation and in a similar way when summing over the whole 

population (cf. above). Note that s in £ (•) is stochastic but by 
i€S 

use of (!4.1) we can rewrite the sum in the following way: 

I (') = I I/,- \(')> where U is constant, 
ies ieU i1es} 

The expectation of the inclusion indicator is 

(4.2) 

-1 An unbiased estimator of the population size is N = £ %. . This 
s ies 1 

is simply proved by use of (4.2) 

For simple random sampling (srs) the first order inclusion probability 
_i 

is i. = n/N, Vi, and hence W . = N. 
ies 

By the functional representation of the inequality parameters introduce 

iiti section 2 we only have to estimate the finite population df FN to 

obtain point estimates. The following definition gives an estimator 

of the df FN. 

DEFINITION 4.1 An estimator of the finite population df F.. is 

(4.3) 
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REMARK 4.1 The estimator (4.3) is a Hajek estimator which is a modi­

fication of the Horvitz-Thompson (HT-) type estimator. The estimator 

is biased since it is a ratio of two HT-estimators. If N is 
s 

changed for N, the correct population size, then the estimator 

(4.3) would be unbiased, but it will not have all the properties 

of a df since FN(°°) -r 1 depending on the ratio N /N. 

DEFINITION 4.2 A Hajek estimator of the finite population inequality 

parameter I(FN) based on a design (P(s), scU} is I(FN), 

where F.. is defined in Definition 4.1. 

Explicit estimation expressions are given in Table 4.1 for the parameters 

under consideration. The estimation procedure in the Gini case has 

to be done in two steps: i) data is arranged in increasing order such 

that y. <_ y. £ <y. , j.es, and then ii) straightforward computation. 
J1 J2 Jn 1 

Table 4.1 in here 

REMARK 4.2 Even if we assume N =N, and having approximately unbiased 

estimators of F.., the estimators of the inequality parameters 

are biased since they are ratios. 

REMARK 4.3 The expression for the Gini coefficient given by Brewer 

(1981) is based on a reformulation of R... Different reformulations 

of RN are given in Nygård and Sandström (1981). 
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4.2 Variance estimators 

Both the procedure of estimating the finite population df F.. and the 

structure of the parameters to be estimated imply that the resulting 

estimators are ratio-estimators. Hence both the numerator and the 

denominator are stochastic. In estimating the variances of the estimators 

directly, and not using subsample procedures, we can make use of a 

frequently used approximation method, viz. a method based on a first 

order Taylor approximation technique. To illustrate this let t and 

t be the totals of y and x, respectively, and let the Horvitz-Thompson 
A 

(HT-) estimators be t and t , respectively. Define a ratio r = t /t 
y x' K J y x 

and its HT-type estimator by r = t /t = f(t ,t ). We Taylor expand 

r = f(T ,t ) about t and t as 
y x y x 

(4.4a) 

(4.4b) 

where t = \ z-1%- and z. = y. - rx.. According to (4.4a) the variance 
i&s 

may be written as 

(4.4c) 

and according to (4.4b) 

(4.4d) 
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The two variances are by definition identical. In the case of the 

Gini coefficient the numerator in the ratio (4.6) below will have 

a weight depending on the sample s. We will therefore use the Taylor 

approximation (4.4c) and take account for the stochasticity in the 

weights (method i) ) when estimating the variance. We will also use 

a rough variance estimator according to the ratio variance (4.4d) 

(method ii) ) and not take account for the stochasticity in the weights 

in the numerator. 

The following Proposition gives an explicit formulation of the Yates-

Grundy-Sen estimator of the covariance of two HT-estimators from a 

bivariate sample. 

PROPOSITION 4.1 Assume a bivariate sample s with data (x.,y.), iés. 

and let t and t be the HT-estimators of the totals t = I y. 

and t = I x., respectively. Then the Yates-Grundy-Sen estimator 
x ieU 1 

of the covariance between t and t is 
y x 

(4.5) 

Proof: The proof is similar to the proof of the Yates-Grundy-Sen variance 

estimator, see e.g. Cochran (1977 - pp.260-261). 

REMARK 4.4 If y = x then, of course, Cov(t ,t ) = V(t ), i.e. the 
y x y 

ordinary Yates-Gurndy-Sen variance estimator. 

REMARK 4.5 The covariance estimator of Cov(t , N), where N is the 

population size estimator, is 
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variance estimator of V(N) is given by the covariance estimator 

REMARK 4.6 In Section 4.3 it will be shown, under an auxiliary model 

approach, that the estimators are asymptotically normal'. Resting 

on large sample arguments we can construct approximately confidence 

intervals for the finite population parameters. 

4.2.1 The Gini Family 

The variances of the estimators belonging to the Gini family can either 

be estimated by method i) ("Taylor variance") or by method ii) ("Ratio 

variance"). 

First, we use method i) on the Gini coefficient. The ratio estimator 

corresponding to RN is 

(4.6) 
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Table 4.2 in here 

The variance estimator of V(R.J is given explicitly, be method i), in 

Table 4.2. It has the disadvantage of including up to the fourth order 

inclusion probabilities which is due to the stochastic weights. 

The two other estimators, Mehran's and Piesch's, will include up to 

the sixth order inclusion probabilities! But, if we can estimate V(RN) 

then we can make use of Proposition 2.1 or 2.2 to overestimate V(M,.) 

and V(PN), the variances of Mehran's and Piesch's estimators, respectively. 

Simpler, but cruder, variance estimators can be obtained to all estimators 

belonging to the Gini family by use of method ii). Let the finite 

population parameters be defined, in general, by 

(2.4), 

where the specific parameters RM,M.. amd P.. depends on J(.)> with corrections 

made for finite populations. 

An estimator of V(Ig(FN)), using method ii), is 

(4.7) 

As an example, take the Gini coefficient 

In the Appendix the two variance estimators for the Gini coefficient 

together with the estimator based on the asymptotic variance (4.11) 

are compared in the srs case. In the illustrations given in the Appendix 

we have also included a jacknife estimator. 
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4.2.2 The Generalized Entropy Family 

In the case of the Gini family the simplest variance estimators were 

obtained using method ii). However, in the case of the Generalized 

Entropy family the two methods will give identical estimators. The 

estimators are given in Table 4.3. 

Table 4.3 in here 

4.3 An auxiliary model approach 

In the fix population approach the sample s was obtained according 

to a sampling design from the finite population U and the stochastic 

element in this procedure is the randomization of the sample scö. 

Another way of interpreting a sample s from a finite population U is 

as follows: Assume the sample s to be fixed, i.e. the subset s of 

labels from U and the corresponding units in the finite population 

that is choosen to the sample is fixed. The vector of inclusion probabi­

lities associated with the sample s and the design is considered as 

a vector of deterministic weights. We introduce an auxiliary model 

in such a way that the finite population vector yN = (y1,y?,...,yN) 

is regarded as selected from a set of population vectors 

YN = (Y1Y2,.. . , Y N ) , where Y.,,Y?,... ,YN are independent and identically 

distributed (I ID) as Y with continuous cumulative df Fy(y). The two 

approaches are illustrated by Figure 4.1. 
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FIGURE 4.1 Illustration of the fix population approach (a) and the 

auxiliary model approach (b). 

(a) the fix population (b) the auxiliary model 
approach approach 

Stochastic element: the Stochastic element: the 
randomization of the randomization of the 
sample s finite population vector YN 

The dotted arrow in Figure 4.1(b) illustrates the fact that, since 

the sample s is fixed, the randomization of the sampled vector Y , 

which is a subset of Y„, can be considered as made directly from the 

auxiliary model to the sample. 

Let T(F), T(FN) and T(F ) be the model parameter, the finite population 

variable and the sample variable, respectively. In the fix population 

approach T(F.J was a parameter but under the auxiliary model it is 

a stochastic variate. It will be seen that we may obtain asymptotic 

results for a statistic on the form vfi(T(F ) - T(FN)). Any confidence 

statement in this case is of Royal!-type. cf. Royal! (1971), i.e. 

for a given sample s the probability of coverage gives the probability 

that the interval includes the random variate T(FN) when the generating 

of Y-values from the model is 'repeated1. The obtained asymptotic 

results can also be used as bases for large sample inference in the 

fix population approach. 
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Consider now a sequence of populations U. = {1,2,...,N.} such that 

N, • o» as t -> co . For a fixed t we denote the sample by s, with sample 

size n. and assume that n. ^ «> so that the sampling fraction 

ft = n./N. •» f, 0 < f < 1, as t -»• «> . When t increases we get new 

subsets of U. such that s. is not necessarily a subset of s.+1 (in 

other words we have a triangular array). In a similar way we denote 

the first order inclusion probability by %. and the second order 

inclusion probability by %.... 

By Definition 4.1 we have an estimator of the finite population df 

FN under the fix population approach. The next definition is the corres­

ponding one under the auxiliary model approach, cf. Koul (1970) and 

Sandström (1983). 

DEFINITION 4.3 Let w.t_> 0 be bounded (Vt) deterministic weights, 

-1 
ieU., and w, = n~ J w-t f 0. The weighted empirical distribution 

i&s. 
function (wedf) is given by 

are I ID as Y with continuous cumulative 

is an IID indicator function. 

REMARK 4.7 If the weights are equal to some positive constant, then 

Fn (y) coincide with the 'ordinary1 empirical df and if w.. = 
nt 'z 

= -K-., %•. > 0 and known inclusion probabilities, then (4.8) 

is similar to (4.3), the only difference is that in (4.8) s, 

is fixed and Y. is stochastic with the reversed relation in (4.3). 
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ASSUMPTION 4.1 The weights wi t are defined as above with w. f 0. We 

assume that 

(4.9) 

REMARK 4.8 When the weights equal some positive constant then (4.9) 

is always fulfilled. This is the case of simple random sampling 

and proportional stratified random sampling designs (W.. =%.. = N/n). 

_i 
With other designs, w. = •%.., the assumption states that 

-1 -1 
(n./ I 7w.)-(min it..)" is bounded. The first factor is an estimate 

iést i € st ' 
of the sample fraction f. = n./N. which is assumed to converge 

towards a constant f, 0 < f < 1, so the assumption mainly states 

that the design may not be such that min %..+ 0 as t •> ». 
ies ir 

2 
Let vt be the squared coefficient of variation of the weights, i.e. 

For the Gini family we have the following asymptotic' result. 

THEOREM 4.1 Let IQ (F) be defined as in (2.4) and assume 

Fét, ?= {F;|/J(F(y))ydF(y)| < - }. 

Assume that the function J is bounded and continuous. Then if 

2 G
G > 0 and under Assumption 4.1 

(4.10) 

where f. = nt/Nt, v. is the coefficient of variation of the weights 

and T(F ) and T(FW ) are stochastic functionals defined as T(F) with 
nt t 
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F changed for F and F.. Respectively. \x = T (F) is defined 

by (2.1). The asymptotic variance is 

(4.11) 

Proof: See Theorem 5.2 in Sandström (1983). 

REMARK 4.9 The asymptotic normality of the statistic on the left-

hand side of (4.10) gives us a basis for confidence statements 

in the fix population approach. 

REMARK 4.10 Under the auxiliary model approach the finite population 

correction (fpc) includes v., the squared coefficient of variation 

of the weights w... 

For the parameters belonging to the Generalized Entropy fimily we 

can proceed as in Sandström (1983) using stochastic differentials 

of functionals to obtain asymptotic distributions. By this procedure 

and the use of Proposition 4.2 we will obtain the results stated in 

Theorem 4.2. We start with Proposition 4.2. 

PROPOSITION 4.2 Let g(-) and h(•) be two real functions,both of bounded 

variation and assume E|g(X)| and E|h(X)| to exist and be bounded. 

If X.,Xp,...,X are I ID as X with continuous df F„(x) then 

(4.12a) 
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(4.12b) 

Proof. The main assumption is that of bounded variation of the real 

functions g(-)and h( • ) . The proof is similar to that of Lehmann 

(1966) which he attributes to Hoeffding 1940. 

Remark 4.11 If h(-) = g(-) we get the variance V(h(X)) corresponding 

to (4.12a). 

THEOREM 4.2 Let IF (F) be defined by (2.5a) when c#),1 and by (2.5b) 
L , C 

when c = 0,1 and assume F e. f , f - { F; | IF (F) | < <} . Assume 
t, c 

E|logY|2,E|YlogY|2,and E|YC|2 to exist and to be finite. Then 

2 
under Assumption 4.1, provided that 0 <a < » , 

(4.13) 

2 
where f. and v. are defined as in Theorem 4.1 and a equals 

(4.14a) 
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(4.14b) 

(4.14c) 

Proof. We only give a sketch of the proof for the case c=0. In this case 

the functional equals T(F) = Ir Q(F) = logT?(F) - T,.(F), where T.(F) = 

CO CO 

/logydF(y) and T?(F) = / ydF(y). The stochastic differential equals 
o b 

TA(F -F) = / (F (y)-F(y))dlogy - 1_ J (F (y)-F(y))dy. 
r nt o nt ^y o nt 

Let the remainder term be R = T(Fp ) - T(F) - T̂ (F -F). If 

P 
1 /? -k 9 

we can show that (n./c.) FL — > 0, where c. = 1+vt, then 

1 /? 
the asymptotic distribution of (n./c.) (T(F ) - T(F)) is equivalent 

z t 

to, if any, that of (n./c.) TMF -F). One way to show this 

(4.15) 

where F̂  = F + \(F - F), see Serfling (1980 -p.216). Let q be 

a positive bounded function on [0,1] such that q(t)=q(1-t), 

0 <_ t _< 1/2 and increasing in t and t(1-t)q" (t) is an integrable 
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CO 

function. Let J q(F(y))dy <<>. Define a q-norm on (0,1) as ||G-F|| ,p, -
o ^ ' 

sup|(G(y)-F(y))/q(F(y))| . Then by Lemma 5.3 in Sandström (1983) it 
1 10 -k 

follows that (n./c.) ||F -F|| ,,-x is stochastically bounded. By 

this result it is easily shown that (4.15) is fulfilled. By the same 

argument as in Sandström (1983), i.e. by use of Assumption 4.1 

and the Central Limit Theorem for triangular arrays, cf. Lehmann 

(1976 - p.352), it is readily seen that 

(nt/ct)
1/2T,L(F -F) > U ~ N(0,^), 

where, by use of Proposition 4.2, an equals (4.14a). It is now easily 

checked that (4.13) holds for c=0, cf. Theorem 5.2 in Sandström (1983). 

The cases c=1 and C^0,1 follows in similar ways. 
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APPENDIX 

COMPARISON OF VARIANCE ESTIMATORS FOR THE GINI COEFFICIENT 

We will compare the two variance esitmators for the Gini coefficient 

given in Section 4, where the first is based on method i) ("Taylor 

estimator" in Table 4.2) and the second on method ii) ("Ratio estimator", 

formula (4.7)). To simplify the comparison we only consider simple 

random sampling (srs), without replacement. A third variance estimator 

can be obtained from the asymptotic variance (4.11). A consistent 

estimator of (4.11) is given in Sandström (1983). Explicit formulas 

for the three variance estimators are given in Table A.1. 

When N and n are large (n -> «, , N -> » , f = n/N •> f, 0 < f < 1) the 

Taylor estimator and the formula based on the asymptotic variance 

estimator are identical. The three variance formulas in this case 

are given in Table A.2. 

REMARK A.1 The variance estimator given by Glasser (1962) is similar 

to our method i). 

1) 
To illustrate ' the behaviour of the three variance estimators we 

will compare their sampling distributions from srs without replacement 

from two small parent distributions, both of size N = 11. Population 

1 (P1) is a "symmetric" population and population 2 (P2) is a "skew". 

The sample sizes are in both cases n = 5, i.e. the total number of samples 

11 
is (5 ) = 462. The population values are 

Tl 
'We wish to thank Mr. Bertil Walden for the computations which were 
performed on the IBM 370 at Statistics Sweden. 
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P1: 20,40,45,47,49,50,51,53,55,60,80 and 

P2: 20,21,22,23,24,25,30,40,50,60,80. 

The population distributions are depicted in Figure A.1a). The arithmetic 

means and Gini coefficients are yN1 = 50, yN2 = 395/11 = 35.91 and 

RN1 - 424/3025 = 0.1402, RN2 = 232/869 = 0.2670, respectively. 

REMARK A.2 If we had not used the Gini coefficient with its Gfpc-

term, cf. Remark 3.3, the inequality parameters would had been 

RN1 = 0.2311 and RN2 = 0.3579, respectively. 

In figure A1 b) the sampling distributions of the 462 possible estimators 

of R,, are plotted. As one can see the sampling distribution from P1 

is more symmetric than that from P2, cf. Table A.3. The relative Bias 

of RN as an estimator of RN is for P1 -11.2% and for P2 -15.0%. This 

bias can be decreased through an expectation-correction, viz. by defining 

RN = (N/N-1)RN and RN = (n/n-1)R... These correted definitions 

are often found in the literature. The relative bias of R.. is for 
Nee 

P1 +0.9% and for P2 -3.0%. 

In addition to the three variance estimators discussed above we have 

for illustrative purposes included the sampling distribution of a 
n ~. x. ? 

jacknife estimator, computed as ((n-1)/n) I (R., - R,,) , where R., 

is an estimator of the Gini coefficient excluding the ith observation 

1 n ~i 
and R- = n £ R . 

n i=1 

For both populations, the "Ratio estimator" of the variance overestimates 

the true value by a factor 12-14 while the "Taylor estimator" slightly 
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overestimates the variance in the symmetric case and underestimates 

it in the skew case. The Asymptotic estimator underestimates the variance 

while the Jacknife overestimates it. 

When both the sample size and the population size increases one could 

guess that the differences in the variance estimators would decreas 

and that the sampling distribution of R.. will be more symmetrical. 

More work will be done in investigating the sampling properties of 

the variance estimators. 

Table A.1 in here 

Table A.2 in here 

Figure A.1 in here 

Table A.3 in here 

Fi gyre A.2 in here 

Table A.k in here 
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Table 2.1 Some inequality parameters belonging to the Gini 

family and to the Generalized Entropy family. 

NOTES: 1) The following relation holds between the parameters in 

the Gini family: M = 3R - 2P 

2) This parameter belongs to a general class defined 

by Piesch (1975 - p.131) 

3) The generalized entropy family is related to Atkinson's family 

of measures, see Atkinson (1970). 

k) E„ is also labelled Hirschman's index. 



TABLE 2.2 Reformulations of some inequality parameters of income inequality. 

Notes: 1) The relation between Gini's mean difference and the Gini coefficient is obvious. All parameters belonging 
to the Gini family are weighted Gini's mean differences. 



Table 3.1 Expressions for some parameters of the Gini family corrected for 

finite populations, cf. Remark 3.3. 



Table 3.2 Expressions for the parameters of the Generalized Entropy family. 



1) 

Table 3.3. Lower bounds and the maximum bias of these bounds for 

parameters of the Gini and the Generalized Entropy family 

when calculated from grouped data. 



1) The upper bound is obtained by addition of the maximum bias to 
the lower bound. 

i-1 
2) Q. is defined through .Q. = Z N. . 

j = l J 



Table 4.1 Point estimators of the finite population inequality parameters under the fix 

population approach. 



Table 4.2 Variance estimator of the estimator of the Gini coefficient using 

the linear terms in the Taylor expansion (method i). 







Table 4.3. Variance estimators of the estimated members of the Generalized 

Entropy femily using the l inear terms in the Taylor expansion 

and V(t ), V(t ) and V(t ) are obtained by changing y. for z. = log y., v. = y. log y. 

and u. = yc , respect ively. The covariance estimators are given by (4.5) and 

Remark 4.5. 



Table A.1 Variance estimators for the Gini coefficient. 





Table A.2 Approximated variance estimators for the Gini coefficient when N and n 

are large. 



TABLE A. 3 Properties of the two sampling distributions of R from PI 

and P2, respectively. In both cases N = 11 and n = 5, i.e. both 

sampling distributions consists of 462 possible values R„. 
N 



TABLE A.4 Properties of the sampling distributions of Var(R ) from P1 

and P2. Four variance estimators are compared, viz. the Ratio, Taylor, 

Asymptotic and Jacknife estimator. 



Notes: See Table A.3 



FIGURE A.1 The two parent populations, both of size N = 11, and the sampling distributions of R , the estimated 

Gini coefficient from simple random sampling without replacement, n = 5. 

P 1 

a) Population distribution 

b) Sampling distribution of R . 

P 2 

a) Population distribution 

b) Sampling distribution of RN? 



FIGURE A.2 Sampling distributions of variance estimators for the estimated Gini coefficient 

p 1 P_2 
a) Ratio estimator a ) Ratfo estimator 

b) Taylor estimator b) Taylor estimator 

c) Asymptotic estimator c) Asymptotic estimato-

d) Jacknife estimator d) Jacknife estimator 
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