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ABSTRACT

This paper examines two families of inequality parameters, frequently
used as measures of income inequality, viz. the Gini family and the
Generalized Entropy family. Computations In total surveys and estimation
in sample surveys are discussed. The estimation procedures are made

both under a fix population approach and under an auxiliary model
approach. Various variance estimators are discussed and for the Gini
coefficlent the sampling distributions of the point estimator and the

variance estimators from two small populations are compared.
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1 INTRODUCTION

When describing a set of data - or comparing two or more data sets

- the variance is the most frequently used measure of dispersion.

Another way of describing variability has emerged from studies of

the size distribution of income. In the case of income data, dispersion
is often interpreted as reflecting "income inequality" and in order

to assess jts magnitude particular measures ("measures of income
inequality") have been derived from assumptions ("criteria") on how

a measure should respond to specific changes in the income distribu-
tion. An example of such a measure of income inequality is the well-

known Gini coefficient.

These dispersion measures will here ba called inequality parameters

to point out that their field of application is not only restricted
to income distributions. In fact, applications to e.g. trading balance,
unemployment, consumption, and residential density are found in the
literature and, in general, inequality parameters may be calculated

for any quantitative data set.

In this paper we show how some commonly used inequality parameters
may be computed in total surveys and estimated in sample surveys.
To be more specific, we focus on two families of inequality parameters,

viz. the Gini and the Generalized Entropy families.

The paper is organized in the following way: The inequality parameters
are defined in Section 2 using statistical functionals. In Section 3

we discuss parameter computation in total surveys based on complete



or grouped data. Estimators, and variance estimators, based on probabili-
ty samples are discussed in Section 4. In the Appendix the variance

estimators are compared for the Gini coefficient under a simple random

sampling design.
2 INEQUALITY PARAMETERS

In this section we will pick up two frequently used classes of inequality
parameters and give their formal definitions by use of a functional
approach. The first class is choosen because its relation to the well-
known Lorenz Curve (LC). The area between the LC and the diagonal

Tine in a Lorenz diagram is oftenly used as a measure of income inequality.
This first class is defined as a weighted Lorenz area and will be

called the Gini family, because it includes the Gini coefficient of

income inequality as a member. The second class of parameters is the

Generalized Entropy family, which is choosen because it has been proved

that the members of this family are the only parameters that fulfill
some special criteria imposed on inequality measures, see e.g. Cowell
(1980), and that these members are the only parameters that can be
decomposed in accordance with the proposals given by Shorrocks (1980),

(1983).

2.1 Definitions by a functional approach

In defining the two families of inequality parameters it will prove
convenient to represent all parameters as statistical functionals

(or ratios of statistical functionals) by use of the Lebesgue-Stiltjes
integral. Let the variate Y have a distribution function (df) FY(y)
with E(Y) = by # 0, < ». In terms of a statistical functional by can

be written as



In a total survey of a finite population, cf. Section 3, with the

finite population df FN’ (2.1) becomes

® N
TR = [y () =W Yy = (2.2)

and an estimate of (2.2) based on a sample survey is obtained by (i)

estimating FN and (ii) changing FN for its estimate, say FN’ i.e.

T (Fy) = iydl;N(y). (2.3)

The last procedure is discussed in Section 4.
The inequality parameters that we will discuss here are all relative
measures of dispersion, i.e. they are scale invariant. The two families

of parameters that we consider are

+ the Gini family:

1(F) = Tg(F)/T (F), (2.4)

where To(F) = [I(F(y))ydF(y)

and J(+) is a smooth function.



+ the Generalized Entropy family:

I () = gy { TR /T (A -1, c#0. (2.52)

where Tc(F) = fyCdF(Y),

with the limiting value, see e.g. Shorrocks (1982), when

c = 0and c = 1:

(F) = (—1)1'C T (F)/T (F)S, c =0,1 (2.5b)

fee]

where T_(F) = fyc1og(y/Tu(F))dF(Y)-

-0

The J(*) - function of the Gini family is sometimes referred to as
a weight function since the parameters of this family may be interpreted

as weighted Lorenz areas.

In Table 2.1 some examples of parameters belonging to the above families

are given.

R . T

Since the main objective of this report is on estimation we have no
intention to discuss the relevance of any members of the two families.

That is a question for the user of income inequality measures.
2.2 Some useful results
The following two propositions can prove helpful when analysing inequality

parameters, e.g. in variance estimation. The reformulations of the

parameters proposed here assume that F is contiruous.



PROPOSITION 2.1 Assume F to be continuous and let W(-) be
a monotone non-decreasing function and assume }[w(p)F'1(p)|dp to exist,
where F'1(p) = 1Qf {x|F(x)>p b, 0<p<1, and F'1(0) = 1nf{x|F(x)>0 }.
If we assume that }w(p)dp <= then "
0

[P 1 ] -1 -1
gw(p)F (p)dp = é élw(p) - W(a)[-[F7'(p) - F~(q)|dpdq +

1
+op gW(p)dp, (2.6)

1
where p = fF'1(p)dp {w,
0

The proof follows by changing order of integration in the first term on

the right hand side.

REMARK 2.1 If W(+) is monotone non-increasing the Proposition is valid

if we change sign on the right hand sid of (2.6).

REMARK 2.2 Note the following special cases of the Proposition:

i) W(p) = c, constant, is trivial.

2 1 2 [ -1
ii) o = é(F (p) - wp = [W(p)F™ (p)dp, with W(p) = F '(p) - u.
0
2 . 119 1 ST, 12
By (2.6) ¢ can be written as | ﬁz(F (p) - F "(q))“dpdg, where

00

(F'1(p) - F'1(q))2 js the symmetric kernel corresponding to the

~N| —

U-statistic equal to the sample variance.



jii) The central moment by can by (2.6) be written as

. 11 . .
b= Lo ET ) -0 T - ) - T
00

jv) If W(p) is the function corresponding to a Tinear function of order
statistic, usually denoted J(p), then (2.6) is obvious.

If W(p) = J(p) as in Remark 2.2 iv) and J(p) is a power function then the

following Proposition can be used to rewrite J(p)F'1(p)dp.
0

PROPOSITION 2.2 Let J(p) be a power function in p, power r > 1, and assume

1
J13(p)F 1(p)ldp to exist, where F is continuous and F™ is
0

defined as in Proposition 2.1. Then

JEF  do = 1 o) 1F ) - F(a) | dpda, (2.72)
0 00

where D{p) is a function in p of power r-1 and the following relation
between J(p) and D(p) holds

J'(p) = (2p-1)D'(p) + 4D(p). (2.7b)
The proof is straightforward.

REMARK 2.3 The parameters belonging to the Gini family can either be
rewritten according to (2.6) or to (2.7a). As an example, take the

Gini coefficient where J(p) = 2p-1. Then by (2.6) we have, since

}(2p-1) dp = O;
0

R =

11 ) )
-& I Hp-a][F'(p) - F 1(q)ldpdq-
00

J*(p) = 2 and hence, by (2.7b), D(p) = %_,



which gives, by (2.7a),

R =4 1f1j|F‘1(p)-F'1( )| dpd
n 54 q pdqg.

In Table 2.2 the parameters of Table 2.1 are rewritten according to

Propositions 2.1 and 2.2.

3 TOTAL SURVEYS
3.1 Calculations in Total Surveys

The computation of the inequality parameter in a finite population is,in
view of the functional approach, straightforward. The finite population

df FN is defined as

N
1 , (3.1)
BRSNS

where I, .is the indicator function taking on the value 1 when the

{#}
event {-} occure and the value 0 otherwise.

REMARK 3.1 The data set in the finite population, N = (y1,...,yN),

is a fixed vector.

REMARK 3.2 If the observations in yy are arranged in non-decreasing

order, i.e. y(1)§_y(2)§_....§y(N) then we can write (3.1) as



,

0 ify<y(1)

Fy(y) = IMNAE Y Sy <Y ey @Y (o) < Y(gpe) T

= Y(iope2)T o Y)Y

1 if Y(n) <y.
Both this definition and (3.1) include the possibility of ties.

The arithmetic mean in the finite population is given by (2.2). If there
is N'<N distinct values of y then we define the probability function
at y(i) as

fN(y(i)) = FN(y(i)) = FN(Y(1_1))- (3.2)

With use of (3.2) we get

The Gini family is defined by Io(Fy) = To(F\)/T (Fy),

where

(o]

(Fy) = JIF R = T

-0 i

T

I~ 2

J(Fp (s Dy (yy) (3.3a)

and if no tied y-values are present we can rewrite (3.3a) as a linear

function of the ordered data set (with use of FN(') given din Remark 3.2)

so the computation is straightforward when the observations are rank-

ordered.



REMARK 3.3 The weight function for the finite population Gini coefficient

is according to Table 2.1, for (3.3a) J(FN(yi)) = ZFN(yi) -1
and for (3.3b) 2% - 1. For a non-negative variate RNEE[1/N,1] .

The usual definition found in the 1iterature, cf. e.g. Nygard
and Sandstrom (1981), is based on Proposition 2.2. With use of
the result in Remark 2.3 the J-function corresponding to (3.3a)

will be 2FN(yi) -1 - fN(yj), where f (yi) is defined by (3.2).

—

N

In the case of rank-ordered data we get 2%—- 1 - %u The term N
will be called the Gini finite population correction (Gfpc). In
the non-negative case with RN including the Gfpc-term we have
Ry E[0,1 - %—]. There are at least three reasons for making this
correction, viz. i) the lower bound of the parameter is zero

for non-negative data (the RANGE criterion in e.g. Nygdrd and
Sandstrom (1981)), i) the REPLIC criterion is fulfilled, cf.

op. cit., and iii) the bias in the sample estimator TG(FN) is

decreased.

In the sequel we will use finite population corrected parameters of
the Gini family, see Remark 3.3. In Table 3.1 explicit expressions
for some members belonging to the Gini family are given and in Table
3.2 we have explicit expressions for parameters of the Generalized

Entropy family.
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3.2 Calculations from grouped data

In practice we frequently have to deal with situations in which we
- instead of having access to the complete data - are provided only

with data in condensed form (frequency tables etc.).

In this section we address the problem of how to calculate parameters

of the Gini and Generalized Entropy family in these cases.

One method of calculating parameters from grouped data starts out

from some specific assumption regarding the behaviour of the distribution
function FN(y) within the different groups - a vast amount of suggestions
are found in the literature (for references see e.g. Nygdrd and Sandstrom
(1981), p.113, Dagum (1983), MacDonald (1984). According to other

related methods the parameter calculation is based on some interpolation/
extrapolation technique (cf. Gastwirth and Glauberman (1976), Kakwani

(1980}, Cowell and Mehta (1982)).

In contrast to these methods, the approach reported in this section
is basically 'non-parametric' (cf. Gastwirth (1975 ) in that it provides
lower and upper bounds for the parameter value inherent in the population

without any distributional assumptions on the complete data.

We start out by assuming that the available information about the
distribution is given in a frequency table with the range divided

into k intervals with boundaries

] a;_qs ai], a;_q < a4, i=1,...,k, where a5 > 0 and 3 < =.

Let Ni and &1 denote the frequency and mean respectively, within group

T, 1=t ik, I NG = N, L NGYL = Ny



1"

In this situation the standard textbook method of calculating the

Gini and Entropy parameters of Table 3.1 and 3.2 substitutes the group
means 91 into the calculation formulas - implicitly assuming that

all observations within each group equal the group mean. Actually,

this is in a very precise sence a sound procedure, since it may readily
be seen that substitution of group means into the complete data formulas
minimizes the Gini and Entropy parameters subject to the restriction

of fixed means. As a consequence, the resulting parameter values are
negatively biased as the corresponding complete data parameter in
general will exceed the calculated value. An upper bound for this

bias may be found by maximization of the parameter values subject

to given group means and boundaries. It turns out (cf. Gastwirth (1975))
that the maximum is obtained by placing (1—h1)N1 of the observations

in group i at the lower boundary a5 g and the remaining KiNi observations
at the upper boundary a5 where

?\1 = (.Y-i - ai'1)/(a'i - a'i"1)

is derived from the restriction of a fixed group mean.

REMARK 3.4 That the minimum parameter value occurs when all observations
equal the group mean and the maximum value when the observations
are placed at the group boundaries is actually an immediate con-
sequence of the fact that the parameters under consideration
satisfy the principle of transfers i.e. the parameter value increases
if an amount A > 0 is "transfered" from y

to ¥ ¥, < Y,

P P

Formulas for the lower bound and maximum bias, which added to the
lower bound gives the upper bound, are presented in Table 3.3 for

the Gini and Generalized Entropy parameters.

Table 3.3 in here
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REMARK 3.5 Note that lower parameter bounds in the case of
a decile type frequency table with Ni = N/k, i=1,...,k, simply
are obtained by substituting k for N and 91 for ¥; in the complete

data formulas.

REMARK 3.6 Upper bounds for the parameters of the Gini family may
also be derived in the case of unknown boundary points, ai, i=1,...,k.

See Mehran (1975), Nygérd and Sandstrom (1981).

REMARK 3.7 The parameter bounds may readily be sharpened by introducing
additional assumptions on the distribution within the separate groups.
See e.g. Gastwirth (1972), (1975) for an application to the case

when data has a decreasing density in some interval.

REMARK 3.8 Upper and lower parameter bounds may also prove useful
when considering optional boundary points for data presentation.
Optimal methods for grouping, when the purpose is to calculate
parameters of the Gini family, are found in Aghevli and Mehran

(1981) .

REMARK 3.9 Note that the 'non-parametric' parameter bounds derived
from grouped data not should be confused with 'confidence' statements
about the true parameter value when data is obtained through
sampling. The sampling case, in which the expressions of Table
3.3 give bounds on the parameter estimator, will be addressed
in Section 4. See also Beach and Davidson (1983) for a discussion

of the estimation problem when only grouped sample data is available.
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4 SAMPLE SURVEYS
4.1 The fix population approach

Assume a finite and identifiable population of size N. The identifiability
assumption makes it possible to uniquely label the population units

from 1 to N. We also assume that the label of each unit is known,

which implies that we can define a label set U = {1,2,...,N} of the
population universe. With the jth unit, jeU, we associate some number

yj, which can be seen as a reslut of measuring unit j (the yj can

be a vector of numbers).

A sample s is a subset of U, i.e. s = {ji|jieU, i=1,2,...,0(s)} ,

where n(s) is the sample size which may depend on s. A sampling experiment
will yield a sample scU according to a probability distribution P(s),
where P(s) denotes the probability with which s is choosen and observed.
{P(s), scU} is called the sampling design (plan). In the sequel we

only consider fixed size designs, i.e. n(s) = n, where the sampling
procedure is taken without replacement. fn = n/N is called the sampling

fraction, 0 < fn <1 (fn = 1 implies a total survey, see Section 3).

The inclusion probability of first order of unit i is defined as
Ty = P(ie s) and the second-order inclusion probability of units i

and j as n,. = P(i,jes), 1 # j. Higher order inclusion probabilities

ij

can be defined in a similar way. For a fixed size design § my =M.
iel

Let us define the inclusion indicator, which we will have much use of,

as
1 if ies
I{ie;s} = (4.1)
0 otherwise .
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n
If we are summing over the sample s we write either §| or | depending
ies i=1
on the situation and in a similar way when summing over the whole

population (cf. above). Note that s in ) (-) is stochastic but by
ies
use of (4.1) we can rewrite the sum in the following way:

123 () = 1£U I{ies}(.)’ where U is constant.

The expectation of the inclusion indicator is

E( = n;, Viel. (4.2)

I{1'65})

An unbiased estimator of the population size is N_ = ) n;1. This
i€s
is simply proved by use of (4.2)

-~

E(NS) = E(.Z I
iel

n;1 = N.

-1y
{1E§}ni ) - iEUE(I{iES})
For simple random sampling (srs) the first order inclusion probability
is n, = n/N, ¥i, and hence J nf1 = N.

i L

ies

By the functional representation of the inequality parameters introduced
insection 2 we only have to estimate the finite population df FN to
obtain point estimates. The following definition gives an estimator
of the df FN.

DEFINITION 4.1 An estimator of the finite population df FN is

FN(y) = NS iés I{yiﬁy}/ni, Vy, (4.3)

where N_ = ) n;1.
i€s
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REMARK 4.1 The estimator (4.3) is a Hajek estimator which is a modi-
fication of the Horvitz-Thompson (HT-) type estimator. The estimator
is biased since it is a ratio of two HT-estimators. If &s is
changed for N, the correct population size, then the estimator
(4.3) would be unbiased, but it will not have all the properties

of a df since FN(m) %-1 depending on the ratio NS/N.

DEFINITION 4.2 A Hajek estimator of the finite population inequality
parameter I(FN) based on a design {P(s), scU} is I(EN),
where Fy is defined in Definition 4.1.
Explicit estimation expressions are given in Table 4.1 for the parameters
under consideration. The estimation procedure in the Gini case has
to be done in two steps: i) data is arranged in increasing order such

that y. <.

j 3 <o Ly s jies, and then ii) straightforward computation.
1 2

In

REMARK 4.2 Even if we assume NSsN, and having approximately unbiased

estimators of F,,, the estimators of the inequality parameters

N,
are biased since they are ratios.

REMARK 4.3 The expression for the Gini coefficient given by Brewer

(1981) is based on a reformulation of RN. Different reformulations

of R, are given in Nygdrd and Sandstrom (1981).

N
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4.2 Variance estimators

Both the procedure of estimating the finite population df FN and the
structure of the parameters to be estimated imply that the resulting
estimators are ratio-estimators. Hence both the numerator and the
denominator are stochastic. In estimating the variances of the estimators
directly, and not using subsample procedures, we can make use of a
frequently used approximation method, viz. a method based on a first
order Taylor approximation technique. To illustrate this let ty and

tX be the totals of y and x, respectively, and let the Horvitz-Thompson
(HT-) estimators be iy and Ex’ respectively. define a ratio r = ty/tX

and its HT-type estimator by ; = Ey/ix = f(Ey,EX). We Taylor expand

-~

r = f(T ,tX) about ty and tx as

y
r-r= f(ty,tx) - f(ty,tx) =
=t Mt -t ) - (t /t9) (b -t) (4.4a)
X 'y 'y Yy oUx Y Tx X '
= (t -rtx)/t = tz/tx, (4.4b)
where tz = 3 Zi/ni and Z, = Y5 - rXge According to (4.4a) the variance
jies

may be written as

-~ -~ ~

V(r) = t;ZV(Ey) " (ty/ti)zv(tx) - Z(ty/ti)Cov(ty,tx) (4.4¢)

and according to (4.4b)

V(r) = t;ZV(EZ). (4.4d)
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The two variances are by definition identical. In the case of the

Gini coefficient the numerator in the ratio (4.6) below will have

a weight depending on the sample s. We will therefore use the Taylor
approximation (4.4c) and take account for the stochasticity in the
weights (method i) ) when estimating the variance. We will also use

a rough variance estimator according to the ratio variance (4.4d)
(method 1) ) and not take account for the stochasticity in the weights

in the numerator.

The following Proposition gives an explicit formulation of the Yates-
Grundy-Sen estimator of the covariance of two HT-estimators from a

bivariate sample.

PROPOSITION 4.1 Assume a bivariate sample s with data (Xi’yi)’ i€s,

and let ty and tx be the HT-estimators of the totals ty = ) ¥;

iel
and tx = ) X respectively. Then the Yates-Grundy-Sen estimator
iel - -
of the covariance between ty and tx is
~ s . 1 (mymy -ms) ¥y Y5 XXy
COV(ty,tx) = 7‘_2_2 —5— (-5 (-5 (4.5)
1,J)€S 1J 1 J 1 J

Proof: The proof is similar to the proof of the Yates-Grundy-Sen variance
estimator, see e.g. Cochran (1977 - pp.260-261).

-~ -~ PN

REMARK 4.4 1If y = x then, of course, Cov(ty,tx) = V(ty), i.e. the

ordinary Yates-Gurndy-Sen variance estimator.

~ -~

REMARK 4.5 The covariance estimator of Cov(ty, N), where N is the

population size estimator, is
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-~ - ~ ('n;.‘n.-n..) y y
i

Covigyoh) =5 1§ —-L (-

i,Jjes iJj i J

variance estimator of V(N) is given by the covariance estimator

with y. =1, Yies.

REMARK 4.6 In Section 4.3 it will be shown, under an auxiliary model
approach, that the estimators are asymptotically normal. Resting
on large sample arguments we can construct approximately confidence

intervals for the finite population parameters.

4.2.1 The Gini Family

The variances of the estimators belonging to the Gini family can either
be estimated by method i) ("Taylor variancey) or by method ii) ("Ratio

variance").

First, we use method i) on the Gini coefficient. The ratio estimator

corresponding to RN is

R, =2 - 1=f(t ,t,N), 4.6
y o2 (£y0tyo0) (4.6)
y
where N = ﬂ;1
ies
= AN
uy = 1.25 Psi¥i/ ™

_ 1 1
and P_. = I [qs + =P .y + s, P oy= I -
si ™ ks Togom Tz T Psen) Ty Psqa) RRTRIALE:
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The variance estimator of V(RN) is given explicitly, be method i), in
Table 4.2. It has the disadvantage of including up to the fourth order

inclusion probabilities which is due to the stochastic weights.

The two other estimators, Mehran's and Piesch's, will include up to

-~

the sixth order inclusion probabilities! But, if we can estimate V(RN)

then we can make use of Proposition 2.1 or 2.2 to overestimate V(MN)

and V(PN), the variances of Mehran's and Piesch's estimators, respectively.

Simpler, but cruder, variance estimators can be obtained to all estimators
belonging to the Gini family by use of method ii). Let the finite

population parameters be defined, in general, by

v Iy, cf (2.8),

1
N

2(<.| |.__\

where the specific parameters RN,MN amd PN depends on J(*), with corrections

made for finite populations.

-~

An estimator of V(IG(FN)), using method ii), is

- - (11;.11:. -7 ) :Z\ %
VIg(Fy) =4 4= 7] — 1 (1. 3)% (4.7)
ty 1,J€s iJ i Jj
where ;i = GHFN(yi)) - IG(FN) )yi. As an example, take the Gini coefficient
where Z. = (2FN(y1) - fN(yi) -1 - RN)y1

In the Appendix the two variance estimators for the Gini coefficient
together with the estimator based on the asymptotic variance (4.11)
are compared in the srs case. In the illustrations given in the Appendix

we have also included a jacknife estimator.



4.2.2 The Generalized Entropy Family

In the case of the Gini family the simplest variance estimators were
obtained using method ii). However, in the case of the Generalized
Entropy family the two methods will give identical estimators. The

estimators are given in Table 4.3.

- = e e mm e e e -

- = e m = = o m e

4.3 An auxiliary model approach

In the fix population approach the sample s was obtained according
to a sampling design from the finite population U and the stochastic
element in this procedure is the randomization of the sample sc< U.
Another way of intarnrating a sample s from a finite population U is
as follows: Assume the sample s to be fixed, i.e. the subset s of
Tabels from U and the corresponding units in the finite population
that is choosen to the sample is fixed. The vector of inclusion probabi-
lities associated with the sample s and the design is considered as
a vector of deterministic weights. We introduce an auxiliary model
in such a way that the finite population vector Yy = (y1,y2,...,yN)
is regarded as selected from a set of population vectors

Y where Y_,Y are independent and identically

~N 127220 N)’ 12722 N
distributed (IID) as Y with continuous cumulative df FY(y). The two

= (Y,,Y Y LY

approaches are illustrated by Figure 4.1.
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FIGURE 4.1 Illustration of the fix population approach (a) and the
auxiliary model approach (b).

(a) the fix population (b) the auxiliary model
approach approach
auxiliary
u y R y model
IN | design un Y~Fy,(y)
s TZ__JL_,t“
v XN : Yn
design ~
s fix
Stochastic element: the Stochastic element: the
randomization of the randomization of the
sample s finite population vector Y

~N

The dotted arrow in Figure 4.1(b) illustrates the fact that, since
the sample s is fixed, the randomization of the sampled vector 1 n?
which is a subset of iN’ can be considered as made directly from the
auxiliary model to the sample.

Let T(F), T(F,) and T(Fn) be the model parameter, the finite population

N
variable and the sample variable, respectively. In the fix population
approach T(FN) was a parameter but under the auxiliary model it is

a stochastic variate. It will be seen that we may obtain asymptotic
results for a statistic on the form /ﬁ(T(Fn) -T(FN)). Any confidence
statement in this case is of Royall-type. cf. Royall (1971), i.e.

for a given sample s the probability of coverage gives the probability
that the interval includes the random variate T(FN) when the generating
of Y-values from the model is 'repeated'. The obtained asymptotic

results can also be used as bases for large sample inference in the

fix population approach.
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Consider now a sequence of populations Ut = {1,2,...,Nt} such that

Nt >o as t > » . For a fixed t we denote the sample by St with sample

size ny and assume that ng > S0 that the sampling fraction

ft = nt/Nt > f, 0<f <1, ast» o . When t increases we get new

subsets of Ut such that Sy is not necessarily a subset of St (in
other words we have a triangular array). In a similar way we denote

the first order inclusion probability by Tt and the second order

inclusion probability by it

By Definition 4.1 we have an estimator of the finite population df
FN under the fix population approach. The next definition is the corres-
ponding one under the auxiliary model approach, cf. Koul (1970) and

Sandstrom (1983).

DEFINITION 4.3 Let witg_o be bounded (Vt) deterministic weights,

iel;, and Wt = n£1 ) wip # 0. The weighted empirical distribution
i€s
function (wedf) is giv&n by

where Y1,Y2,...,Yn are IID as Y with continuous cumulative

df FY(Y) and I{Yi.f.y} is an IID indicator function.

REMARK 4.7 If the weights are equal to some positive constant, then

*
Fn (y) coincide with the 'ordinary' empirical df and if Woyp =

t
= “;1’ Tip > 0 and known inclusion probabilities, then (4.8)
is similar to (4.3), the only difference is that in (4.8) St

is fixed and Yi is stochastic with the reversed relation in (4.3).
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ASSUMPTION 4.1 The weights Wiy are defined as above with Wt # 0. We
assume that
W.
max (:1302 §_d2 <=, Vt. (4.9)
i€s, Wy
REMARK 4.8 When the weights equal some positive constant then (4.9)
is always fulfilled. This is the case of simple random sampling

and proportional stratified random sampling designs (W].t =n;1 = N/n).

With other designs, w1.t = n}l, the assumption states that
(nt/ ) n%l)-(min n.t)'1 is bounded. The first factor is an estimate
iést iesy

of the sample fraction ft = nt/Nt which is assumed to converge
towards a constant f, 0 < f < 1, so the assumption mainly states
that the design may not be such that min iy 0ast » =,
ies
Let vi be the squared coefficient of variation of the weights, i.e.

_ 2 -2 2 _ - - 2
= sp/Wp and so= et T (W - W)t
'IéSt

v2
t

For the Gini family we have the following asymptotic result.

THEOREM 4.1 Let IG(F) be defined as in (2.4) and assume
Fef, £ = (F;|[I(F(y))ydF(y)] < = }.
Assume that the function J is bounded and continuous. Then if

o2

G > 0 and under Assumption 4.1

1/2 .

n afF ) -1(F, )}

i ° Zir%; °C\ U~ N(O,(u_zcé) , (4.10)
{1 - ft +ovyd

where ft = nt/Nt’ Vi is the coefficient of variation of the weights

are stochastic functionals defined as T(F) with

and T(F_ ) and T(FN )

*
Ny t
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F changed for F* and F, ,respectively. p =T (F) is defined
"t Ny y
by (2.1). The asymptotic variance is

Gg - ofoofo min(Fy(y),Fy(x)) = Fy(WIFy(x) ) = JFy(y))(Fy (x))dydx,

- Q0= 0

where J1(F) = J(F)—IG(F). (4.11)

Proof: See Theorem 5.2 in Sandstrom (1983).

REMARK 4.9 The asymptotic normality of the statistic on the left-
hand side of (4.10) gives us a basis for confidence statements

in the fix population approach.

REMARK 4.10 Under the auxiliary model approach the finite population

correction (fpc) includes v%, the squared coefficient of variation

of the weights Wiy

For the parameters belonging to the Generalized Entropy fimily we
can proceed as in Sandstrom (1983) using stochastic differentials
of functionals to obtain asymptotic distributions. By this procedure
and the use of Proposition 4.2 we will obtain the results stated in

Theorem 4.2. We start with Proposition 4.2.

PROPOSITION 4.2 Let g(-) and h(*) be two real functions, both of bounded
variation and assume E{g(X)| and E[h(X)| to exist and be bounded.

If X,,X

15 2""’Xn are IID as X with continuous df Fx(x) then

Cou(h(X),9(X)) = [ [min(Fy(x)s Fo(¥) - Fy(x)Fy(y)} dg(y)dn(x).
(4.12a)
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If (x1y1),(x2, 2),...,(Xn,Yn) are IDD as (X,Y) with bivariate

continuous cumulative df FXY(x,y) then

[o~ T~ 2}

Cov(h(X),q(Y)) = [ | Fyy(6Y) = Fy(OF ()} dg(y)dn(x), (4.12b)

where FX(x) = FXY(x, ® ) and FY(y) FXY(<n,y).
Proof. The main assumption is that of bounded variation of the real
functions g(-)and h(-). The proof is similar to that of Lehmann

(1966) which he attributes to Hoeffding 1940.

Remark 4.11 If h(-) = g(+) we get the variance V(h(X)) corresponding

to (4.12a).

THEOREM 4.2 Let I (F) be defined by (2.5a) when c#0,1 and by (2.5b)

E,c
when ¢ = 0,1 and assume Fe # , # = {F;IIE C(F)| <=} . Assume
s

E|1ogY|2,E|Y1ogY|2,and E|YC|2 to exist and to be finite. Then

under Assumption 4.1, provided that 0 <c§ (o,

1/2
Ny {IE,C(Fn ) - IE,C(FN)}

L
t N U~'Mop§L (4.13)

2y 1/2
- fo * Vil /

where ft and vy are defined as in Theorem 4.1 and cg equals

o5 = V(log¥) + Ly v(v) - 21 cov(logy,v), (4.14a)
by My

c=0:

here = E(Y).
W by (Y)
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2 1 (“x+“y)2 (g ty)
c=1: o1 = —?-V(Y]ogY) t V(Y) - 2 ——I;§~— Cov(y,YlogY),
Hy By y
(4.14b)

where by = E(YTogY).

c#0,1: 2 1 V(YS) + ( e )2 v(y) -
> O¢ ? 7 2¢C c+1
c (c-1)" (c-1)p
y y
-2 Pe Cov(YS,Y) (4.14¢)
7 2¢+1 217 .
c(c-1)"p
y
where u; = E(YC)

Proof. We only give a sketch of the proof for the case c¢=0. In this case

the functional equals T(F) = IE 0(F) = 1ogT2(F) - T1(F), where T1(F) =

[logydF(y) and TZ(F) = [ ydF(y). The stochastic differential equals
0 0
X ® x 1%
Te(F, =F) = [ (F (y)-F(y))dlogy - — [ (F_ (y)-F(y))dy.
t 0 t vy o t
* * *
Let the remainder term be R =T(F_ ) -~ T(F) - TL(F_ -F). If
1nt Ny F n,
p
we can show that (n,/c )1/2R* ——> 0, where ¢, = 1+v2 then
t' 7t Tn ’ t 1

t

*
the asymptotic distribution of (nt/ct)”Z(T(Fn ) - T(F)) is equivalent
t

1/2T.

F(F: -F). One way to show this

to, if any, that of (n,/c,)
t' 7t &

is to show that

n”2 sup > 0, (4.15)

t
00T .2

*
where FK =F + ,\(Fn - F), see Serfling (1980 -p.216). Let q be

t
a positive bounded function on [0,1] such that g(t)=q(1-t),
0 <t <1/2 and increasing in t and t(1—t)q'4(t) is an integrable
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function. Let [ q(F(y))dy <=. Define a g-norm on (0,1) as ||G'F||q(F) =
0

s§p|(G(y)-F(y))/q(F(y))| . Then by Lemma 5.3 in Sandstrom (1983) it

follows that (nt/ct)”2

*
lant'Fllq(F) is stochastically bounded. By
this result it is easily shown that (4.15) is fulfilled. By the same
argument as in Sandstrom (1983), i.e. by use of Assumption 4.1
and the Central Limit Theorem for triangular arrays, cf. Lehmann

(1976 - p.352), it is readily seen that

2

> U~ N(O,GO){

1/24, /%
(nt/ct) TF (Fnt _F)
where, by use of Proposition 4.2, cé equals (4.14a). It is now easily
checked that (4.13) holds for c=0, cf. Theorem 5.2 in Sandstrom (1983).

The cases ¢=1 and C#0,71 follows in similar ways.
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APPENDIX
COMPARISON OF VARIANCE ESTIMATORS FOR THE GINI COEFFICIENT

We will compare the two variance esitmators for the Gini coefficient
given in Section 4, where the first is based on method i) ("Taylor
estimator” in Table 4.2) and the second on method ii) ("Ratio estimator",
formula (4.7)). To simplify the comparison we only consider simple

random sampling (srs), without replacement. A third variance estimator
can be obtained from the asymptotic variance (4.11). A consistent
estimator of (4.11) is given in Sandstrom (1983). Explicit formulas

for the three variance estimators are given in Table A.1.

When N and n are large (n + » , N » o , fn= n/N>f, 0<f<1) the
Taylor estimator and the formula based on the asymptotic variance
estimator are identical. The three variance formulas in this case

are given in Table A.Z.

REMARK A.1 The variance estimator given by Glasser (1962) is similar

to our method i).

To 11]ustrate1) the behaviour of the three variance estimators we

will compare their sampling distributions from srs without replacement
from two small parent distributions, both of size N = 11. Population

1 (P1) is a "symmetric" population and population 2 (P2) is a "skew".

The sample sizes are in both cases n = 5, i.e. the total number of samples

is (;1) = 462. The population values are

1jwe wish to thank Mr. Bertil Waldén for the computations which were

performed on the IBM 370 at Statistics Sweden.
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P1. 20,40,45,47,49,50,51,53,55,60,80 and
pz2: 20,21,22,23,24,25,30,40,50,60,80.

The population distributions are depicted in Figure A.%a). The arithmetic
means and Gini coefficients are §N1 = 50, 9N2 = 395/11 = 35.91 and

Rys = 424/3025 = 0.1402, Ry, = 232/869 = 0.2670, respectively.

N1 N2

REMARK A.2 If we had not used the Gini coefficient with its Gfpc-
term, cf. Remark 3.3, the inequality parameters would had been

Rya = 0.2317 and R 2 2 0.3579, respectively.

N1 N

In figure A1 b) the sampling distributions of the 462 possible estimators

of RN are plotted. As one can see the sampling distribution from P1

is more symmetric than that from P2, cf. Table A.3. The relative Bias

of ﬁN as an estimator of RN is for P1 -11.2% and for P2 -15.0%. This

bias can be decreased through an expectation-correction, viz. by defining
Ryee = (NN-1)Ry and Ry = (n/n-1)Ry. These correted definitions

Nec

are often found in the literature. The relative bias of RNeC is for

P1 +0.9% and for P2 -3.0%.

In addition to the three variance estimators discussed above we have

for illustrative purposes included the sampling distribution of a
n -~

= -~
jacknife estimator, computed as ({(n-1)/n) 7§ (R& - RN)Z, where R&
i=1
is an estimator of the Gini coefficient excluding the ith observation
N o~
o _ =1 i
and Ry = n 1Z1RN'

For both populations, the "Ratio estimator" of the variance overestimates

the true value by a factor 12-14 while the "Taylor estimator'slightly



overestimates the variance in the symmetric case and underestimates

it in the skew case. The Asymptotic estimator underestimates the variance

while the Jacknife overestimates it.

When both the sample size and the population size increases one could
guess that the differences in the variance estimators would decreas
and that the sampling distribution of éN will be more symmetrical.
More work will be done in investigating the sampling properties of

the variance estimators.

- e e e o e o s = e e e m = -

Table A.1 in here
Table A.2 in here
Figure A.1 in here
Table A.3 in here
Figyre A.2 in here
Table A.4 in here
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Table 2.1 Some inequality parameters belonging to the Gini

family and to the Generalized Entropy family.

1. THE GINI FAMILY
Weight function, J{u) Name1)
2u - 1 R, the Gini coefficient

1 - 3(1 - u)2 M, Mehran's measure
%(3u2 - 1) P, Piesch's measurez)

2. THE GENERALIZED ENTROPY FAMILYB)
C Name
0 Egs Theil's 2nd measure
1 " Ey, Theil's 1st measure
2 Ezl V2/2, V is the coefficient of variation

NOTES: 1) The following relation holds between the parameters in
the Gini family: M = 3R - 2P
2) This parameter belongs to a general class defined
by Piesch (1975 - p.131)
3) The generalized entropy family is related to Atkinson's family

of measures, see Atkinson (1970).

L) E2 is also labelled Hirschman's index.



TABLE 2.2 Reformulations of some inequality parameters of income inequality.

THE GINI FAMILY

Parameter , J(F) according to (2.6) according to (2.7a)1)

Gini, 2F-1 %_Z_Z|Fx(x)—FX(y)!~|x—y|dFX(y)dFX(x) JZ_ui le -y |dFy (x)dFy (y)

Mehran, 1 - 3(1-F)2 ‘STLZZ |2(F, (x)=Fy (¥))-(F (x) F )| |x-y|dF, (y)dFy(x) %_ZZ (2 - Fy(x))|x-y|dFy (y)dFy(x)
Piesch, 3 F2 - 1 %ZZ |\F§(x)- 2(y) 1+ 1x=y|dF  (¥)dF, (x) %Z Z (5 Fy(x)+ +2) | x=y] dFy (y) dF, (x

THE GENERALIZED ENTROPY FAMILY

Parameter according to (2.6)

Eq - -

17 fl10g X |%
E, hy b|1o ¥ | |X~ﬂde dFX( ) T2
< T ocmi JC i
1 1 [ x7 x| x-y|dFy y)dFy (x)

EC’ C#O,] ——(_C-1—)-121 pC""I"i éo | | | yl

L

Notes: 1) The relation between Gini's mean difference and the Gini coefficient is obvious. A1l parameters belonging
to the Gini family are weighted Gini's mean differences.




Table 3.1

Expressions for some parameters of the Gini family corrected for

finite populations, cf. Remark 3.3.

PARAMETER |FORMULA RANGE (NON-NEGATIVE DATA)
N
. 2 1 1
Gini, R Y dyay -1 - g (0,1 - ]
Mebran, |6 (141 Ty o3 T g7y - (wEw) [0, (1= (1 + )]
VN, L A E LY % LI
Piesch, Py |—— % 12y 0y - =S Tiy,.y - AN [0, (1- Hy- 191




Table 3.2 Expressions for the parameters of the Generalized Entropy family.

PARAMETER FORMULA RANGE (PCSITIVE DATA)
N Y.
£ 1 T log(=1) if y€[0,=[ then EONé[O,w[
N Y y
Ep ! 5 —L log (=) if y€[0,=[ then E; €[0,109 N]
i=1 In N
1 1 N Vi . [0 NS |
E c#0,11 c(c-1 N .Z {(-—‘) -1} if y<[0,=[ then EcN *c(c-1
cN ? ’ 1=




Table 3.3. Lower bounds and the maximum biasl) of these bounds for

parameters of the Gini and the Generalized Entropy family

when calculated from grouped data.

Parameter Lower 23
bound
GINI
FAMILY
1k _
RN N2;N iil Ni(2Qi + Ni)yi -1
1k o _
MN N3— Z N.{(BN(2Q.+N.)Y = 3Q.(Q.+N.)Y = NT2y.- 2
Y - 1 1 1 1 1 1 1 1
N i=1
1 Kk o - 1
PN ’2N3§ E Ni{3Qi(Qi+Ni) + Ni} Yo T 5
N i=1
GENERALIZED
ENTROPY
FAMILY -
k ¥
1 N
Eon N £ Njlog(=>
i=1 Y.
1l
k Y. y
£ L s N 2L jogc—hy
N NS,
1 yN yN
k y. ©
1 1 Ziy
Eon (- N = Ny = - D
1=1 YN
c#0,1




Table 3.3. (cont.)
Parameter Maximum
bias
GINI
FAMILY
1 k >
RN Nz;N izl Niki(l—ki)(ai—ai_i)
1 k
M 3= £ N, (1A (3N 240 (a,-a. )
N Ny, .. 171 i "N, i i “i-1
N i=1 i
1 k 3
PN 2N3; .E Nihi(l—xi)(2—xi)(ai—ai_l)
N i=1
GENERALIZED
ENTROPY
FAMILY
1 -
EON N 151 Ni{logyi—(l—hi)1ogai_1—kilogai}
1 K - -
E1N N i§1 Ni((l-ki)ai_l]ogai_1+ kiailogai— yilogyi}
1 1 K 8i-1.°© a; ¢ Yy¢
ECN (eI N '51 Ni{(l—ki)( =)+ A (=) - (=) 2
c#0,1 ! 73 i N

1) The upper bound is obtained by addition of the maximum bias to
the lower bound.

i-1
2) @, 1is defined through Q. = & N. .
i i j=1 4



Table 4.1

Point estimators of the finite population inequality parameters under the fix

population approach.

FAMILY PARAMETER ESTIMATOR
' .21 Py ) D
Gini coefficient, Ry Ry = —=2 L2 T T
Pn 125 yi/n1
1 2 1 1
6 P .yt )y/TE . e+ b/ .
- S Psaymg U 3 PoayPsay s twz R | Pany” L Ty <o e,
Mehran's measure, My My = - - F J J J
Pa Ly Pl ¥i/™
1€% 1€s
= -~
Z 3T (P2, 4P+ )y P, DERVZAES!
- ies s(i) s(1)4ﬁ 3ns 77 . jés
Piesch's measure, P p -
N N 2 y z
2 P ) Yi/m.
noes 1
~ L J0aN oA -1.
-~ Eon Egn = 109N + ]Og{ig_syi/ni} Ng izsni 109y;
= . - .. =~ 10g y.
b Evy E.y = 109N, - Tog{ 1 yi/n.} o Jes™i 7
a . i
S 1€s I Yilm
— -~ - 1€S
= . ne 1 vi /ms
L.‘g . E = .IES - 1
G E c£ 0,1 cN
<O cN ’ ’ C(C‘T)( Zy/n)c C(C'1)
jes ' 1




Table 4.2 Variance estimator of the estimator of the Gini coefficient using

the linear terms in the Taylor expansion (method i),

o~ o~ LN 4‘t -~ A 4t “~o~ 8t -~ - -~
4 Wy Wy _ Sy .
y y Yy y
Bty ~ - - 8t§y .
- W Cov (twy, N) + W Cov (ty, N),
Yy y
2 I 2
-~ (nom, mo.) /Y. YsN ly<y.] ¥5
where V(t ) = l-y y 1d= 37 L2+ 7Y (1em, ) Jo1
wy 8 & % . 2 2 oL | ij ? ?
i,Jjés iJ T nj/ i£jes nj nj
I
[ys<v;] 95
+ zz (1-m.) i <=3 +
i#jes J n_l,
d
y.<y.] Y. Y
0l (em) — - L S
ifjes Y j " nj
moemom s yews ] My
+ 777 Cijk Tigkd Jji i vk Yi o Y
Lo 4 T, : B : T ™. ET'+
ﬁ i#j#kes ijk J i i k
Ty o) =T T Hy<yisl My ]
N ijk "i3"kd iYi i Y
ZZZ T, . ’ P : T =T
i#j#kes ijk j j i K
Ty oy =T T I[y.<y.] [y, <y.] y2
+ 779 ijk "ij Uik ) Jji S I
ifitkes  Tijk z e 5?—
E Ty oy =T T I[y.<y.] I[y <yl y: Vs
T NP S N L S Bk S S et R S
ifitkes ik 5 ™ o™




Table 4.2, cont

I
B N F I S N L B
ifitkes Mk " n “E
Ty sy o=Ts T I[ <y. ] I[ <y, ]
P D DRSS N S Dol A Nl SO
ifjfk#res  Tijka T

- - (m.m.-m,.) 2
1 1 1
V(N) = =)} = '1J '(}f" =
i,jes ij \\i J
2
ys (m.-m.m.) Y.
- 1 i 1 i i i
A= 1 1 (en)—- 1) —
Cov(twy y) 7 i¢s ! n? Zifjes ™43 n?
I[yj<yi] ¥
FI Gemp) = )
itjes J T i#jes
I
- LY.
¢ 971 ST [y5<¥;] bl
i#j#kes ™ 5k T i



Table 4.2, cont.

" o~ oA (meme-mes) /Ys Y
cou (bl -3 71 TECRE (B4 (1)
" i, j€s ij \nS i

T
1 J
d
<y.] y.
1
+ EZ (1'751) ——Jﬂ: ! n_T -1'1:— - 11‘:—- +
i,jes J i i j

I
+ 779 (myms 573 [yi%] ;1<%_1_>

i#j#kes ik j i

A
a

A o~ A (neme=-m. . V/y:  y= [
Cov(t ,N) = % vy ———1—;1—”— o2 1) of. Remark 4.5
y i,jes ij ] i




Table 4.3. Variance estimators of the estimated members of the Generalijzed

Entropy family using the linear terms in the Taylor expansion

VE ) =L iy AoV im c 2y (1) -
oN 2 N° NN Nt y 2
y y
t_. .~ o~ - £
1 z 1 11 Z
2 = - | COV(» ,N) + 2= (1— \COV(t N)
N ?\17/ t Y NN N2
o2
/t,-t . - 1 - |~
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and V(tz), V(tv) and V(tu) are obtained by changing 2 for z, = Tog Yis V5 = Ys log Y

and u; = y? , respectively. The covariance estimators are given by (4.5) and

Remark 4.5.




Table A.1 Variance estimators for the Gini coefficient.
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Table A.1 Cont.

3. "Asymptotic estimator" (from (4.11))
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Table A.2 Approximated variance estimators for the Gini coefficient when N and n

are large.

Notation: See Table A.1.
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TABLE A. 3 Properties of the two sampling distributions of ﬁN from P1

and P2, respectively. In both cases N = 11 and n = 5, i.e. both

sampling distributions consists of 462 possible values ﬁN’

P1 P2

Ry ' 0.1402 0.2670
Sampling distribution

ﬁN 0.1245 0.2270
Bias -0.0157 -0.0399

Var (Ry) 0.002931 0.003649
% (Ry) 1 0.0927 -0.9130
%, (Ry) 2) -0.8745 0. 4994
CV(Ry) 3) 0.4349 0.2661
Max R 0.2286 0.3133
Min Ry 0.0224 0.0348
Range 0.2062 0.2785

“el

Notes: 1) (1(§N) = O (R, - EN)B/(Var(ﬁN))B/Z is the coefficient of

V= I
skewness
N LS SN = l.} R 2
2) 8,(Ry) = 2L(R, - R)'/(var(Ry))” - 3 is the coefficient of
kurtosis

3) CV(&N) = (Var(ﬁN))]/z/ﬁN is the coefficient of variation.



A
TABLE A.4 Properties of the sampling distributions of Var(RN) from P1

and P2. Four variance estimators are compared, viz. the Ratio, Taylor,

Asymptotic and Jacknife estimator,

P1 P2
Var (Ry) 0.002931 0.003649
Sampling distributions
Estimators
VSr(ﬁN) | Ratio 0.041634 0.045173
f Taylor 0.003323 0.002627
Asymptotic 0.002573 0.001215
Jacknife 0.004981 0.008721
Relative
Bias = Ratio 14,2047 12.3796
Taylor 1.1336 0.7198
Vgr(ﬁN) Asymptotic 0.8779 0.3330
. Jacknife 1.6995 2.38
Var(RN) 399
A A ‘ R
Var (Var(Ry)) Ratio 0.00002529 0.00003897
Taylor 0.00000721 0.00001495
Asymptotic 0.00000648 0.00000128
Jacknife 0.00001313 0.00010225
~ ~
251(Var(RN))’%atio 0.0656 0.3720
Taylor 0.2045 1.3505
Asymptotic 0.2516 1.5338
Jacknife 0.0367 2.0851
A ~ 2 . .
xz(Var(RN)? )Ratlo -1.1878 -0.8068
Taylor -1.5622 1.4334
Asymptotic -1.8118 1.8872
Jacknife -1.5079 k.1708
AA 3 . s
CV(Var(RN)) ) Ratio 0.1208 0.1382
. Taylor 0.8082 1.4729
Asymptotic 0.9889 0.9301
Jacknife 0.7275 1.1596




Table A.4, cont.

Max Var(R ) Ratio 0.051493 0.059357
Taylor 0.008007 0.015855
Asymptotic 0.006791 0.005528
Jacknife 0.011405 0.051416
Min Var(R\) Ratio 0.033464 0.034128
Taylor 0.000008 -0.002716
Asymptotic 0.000009 0.000046
Jacknife 0.000044 0.000083
Range Ratio 0.018029 0.025229
Taylor 0.007999 0.018571
Asymptotic 0.006782 0.005482
Jacknife 0.011360 0.051333
Level of Ratio 100 % 100 %
Coverage Taylor 72.727 % 59.091 %
(95 % CI) Asymptotic 65.152 % 64.719 %
Jacknife 72.727 % 87.879 %

Notes: See Table A.3




FIGURE A.1 The two parent populations, both of size N = 11, and the sampling distributions of RN’ the estimated

Gini coefficient from simple random sampling without replacement, n = 5.
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FIGURE A.2 Sampling distributions of variance estimators for the estimated Gini coefficient
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