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SOME PROPERTIES OF STATISTICAL INFORMATION: PRAGMATICS, 
SEMANTICS, AND SYNTACTICS 

0 Introduction 

Applying semiotics, the theory of symbols, to information in general, and statistical 
information in particular, we may distinguish between three aspects, three types of 
properties (cf Stamper (1973)): 

(a) syntactical properties, having to do with the relations between the symbols 
of information (in a message); 

(b) semantical properties, having to do with the relation between the symbols 
and messages, on the one hand, and the reality that the symbols and 
messages refer to or represent, on the other; 

(c) pragmatical properties, having to do with the relation between the messages 
and the effects of them on a human receiver; 

In more ordinary language we may say that pragmatics deals with the purpose and 
usage of information, semantics deals with the contents and meaning, and syntactics 
deals with the physical and technical aspects: how information can be represented 
and processed. 

1 Pragmatical properties of statistical information 

An important purpose of information is to facilitate some kind of decision-making. 
With a wide interpretation of "decision-making", it may even be claimed to be the 
only purpose of information. However, there are also usages of information that 
most of us would problably describe in other than decision-oriented terms. For 
example, in science and research we may collect and analyze information with the 
primary purpose to get an understanding of how a certain system, or "piece of 
reality", works. 

What is the difference between statistical and non-statistical usage of information? 
Statistical information is typically used for decisions that may be vaguely described 
by such terms as "strategical", "management-level", "policy-oriented", if the usage 
environment is a business or government organization. In a research environment 
statistical information is typically used for getting an overview of a more or less 
complex system (sometimes called the universe of discourse or the system of 
interest), and for formulating and testing hypotheses, and ultimately theories, about 
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this system. 

We may describe the typical usages of statistical information as being of a directive 
nature: statistical information gives direction (advice, guidance) to the decision­
maker or scientist, but it is usually not the only factor that determines the final 
conclusions and actions. 

As a contrast, non-statistical usage of information is typically much more operative. 
On the basic activity level of a business or government organization, decisions are 
oriented towards concrete, individual "cases" like the processing of a certain order 
from a certain customer, or the court trial of a certain person, suspected to have 
committed a certain crime at a certain time, in a certain place. 

To be precise, one should distinguish between "statistical usage of information" and 
"usage of statistical information ". Very often, of course, the two go together, but 
there are also situations, where statistical information is used for non-statistical 
purposes, that is, information of a nature, which is usually used for directive 
purposes as those described above, is instead being used for operative, "individual 
case" oriented decision-making. For example, consider a physician who is treating 
a patient. He or she may may collect a lot of statistical information about the health 
condition of the patient. However, the purpose is very operational; the physician 
should determine (a) from which illness, if any, the patient is suffering, and (b) how 
to cure the patient. Similarly, in a factory, statistical information may be used for 
an operational decision whether to accept or reject a certain lot of manufactured 
products. 

There are also many examples of situations where non-statistical information is used 
for directive decision-making. For example, a politician, who is going to make a 
decision about how to distribute some government support to different parts of a 
country, will typically get a lot of statistical information as a basis for the decision. 
However, most politicians are also likely to be influenced by other types of 
information, like impressions from having been "on the spot", arguments from 
lobbyists, and even tactical considerations in view of coming elections. 

Thus information, which is of such a nature that we recognize it as statistical 
information, is typically used for knowledge-formation and decision-making of a 
nature that we have here labeled as "directive". In other words statistical infor­
mation is one important type of directive information. 

We have also seen that statistical information can be a component in operative 
decision-making. However, most "of the (operative) information used for operative 
decision-making is of a nature that we recognize as non-statistical. 

What then is it in the nature of a piece of information that makes us recognize it 
as statistical information? This is a question of semantics, which will be addressed 
in the next section of this paper. Before going there we shall look at some further 
properties of statistical information, which are connected with its usage. 

The activity or process where certain operative information is used is typically also 
the source of the information. Thus there is a short distance between the birth and 
usage of operative information. Moreover, the link between the source and usage 
of operative information is usually very direct and explicit: the information is 
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collected for a very well defined need, and this need is both a necessary and 
sufficient reason for the information collection. Thus it is both desirable and 
feasible to tailor the definition of the information in accordance with the one and 
only need for it. 

As a contrast, the need for statistical information (as well as for other types of 
directive information) is much more negotiable. It is very seldom that a certain 
piece of statistical information, defined in exactly a certain way, can be claimed to 
be absolutely necessary for a certain purpose. In fact, directive decisions can be 
characterized by the fact that they need no information support at all in order to 
be taken; the decision-maker can always toss a coin, and whatever the outcome, the 
operations of the organization will probably continue to work, at least for some 
time. In the long run directive information is naturally expected to improve the 
performance of the operations, but the links between the information and its effects 
are much more complicated and less direct and obvious than in the case of 
operative information and decision-making. 

Operative information can be classified as "needed" or "not needed" with respect to 
a certain operation. Statistical information, on the other hand, can at best be 
attributed a certain value for the expected improvement of the quality of a certain 
decision or set of decisions. This value has to be balanced against the costs for the 
acquisition of the information, that is, the costs for observation, measurement, and 
processing that is necessary for making the information useful. 

Sometimes it is only through the pooling of several needs that the costs for the 
acquisition of statistical information can be justified. Such situations are called 
"multi-purpose", since the statistical information collected will be used for several 
purposes. The conceptual design of multi-purpose information is complicated, since 
the different information needs are not necessarily compatible. "Common 
denominators" must be found, and costs must be kept down. 

2 Semantical properties of statistical information 

Semantics is a research area within informatics and computer science that is 
receiving growing attention. There are many different names for this subdiscipline: 
conceptual modelling, infological modelling, semantical modelling, and knowledge 
representation, to mention some of them. 

Problems having to do with the contents and meaning of information have received 
a lot of attention in statistical organizations, even before computers were 
introduced. This is not surprising, because it is often more difficult, and at the same 
time more critical, to define the meaning of statistical information. Why? The 
answer has to do with what we discussed in the previous section, the usage and 
purpose of statistical information. 

The meaning of operative, non-statistical information is often very obvious and clear 
for its users. Most statistical products of statistical organization are multi-purpose 
to some extent, very often to a great extent. This is one reason for statistical 
organization becoming interested in the semantical aspects of information even 
before the age of computers. For example, statistical organizations, both national 
and international, have a long tradition in developing standard definitions, 
classifications, nomenclatures, code lists, and registers, in order to improve the 
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compatibility, comparability, and usefulness of statistical information. 

2.1 OPR/ER methodologies for conceptual modelling 

From the definitions in the introduction follows that the semantics of information 
has to do with the relation between (a) the symbols and messages that constitute 
information, on the one hand, and (b) the reality and parts of reality that the 
symbols and messages refer to, on the other. 

Thus in order to develop a model of the meaning of a piece of information, we 
must be able to describe how the piece of information and its parts are related to 
the piece of reality that the information refers to. One type of conceptual 
framework, which has become rather popular for doing this is the so-called Entity-
Relationship (ER) model. 

The Entity-Relationship model is often ascribed to Chen (1976). However, it is a 
fact that similar conceptual models, originated by several European authors, had 
been presented and used for at least a decade before the appearance of Chen's 
paper; for example, see Langefors (1966), Sundgren (1973, 1974), Durchholz and 
Richter (1974), Lindgreen (1974). The methodology used at Statistics Sweden was 
called the infological model, or the Object-Property-Relation (OPR) model, later 
extended to the Object-Property-Relation-Event-Message (OPREM) model; see 
Malmborg (1982). 

Conceptual modelling according to OPR or ER approaches have not particularly 
emphasized the properties of statistical information. On the contrary most variations 
of these modelling methodologies have focused on the type of factual information 
about individual objects that is typical for operative or administrative information 
systems. This does not mean that OPR/ER approaches cannot be used for 
analyzing and modelling statistical information. However, there are still needs to 
refine some of the concepts to make these models even more suitable for cope with 
statistical information. We shall return to this topic. 

All OPR/ER methodologies for describing the semantical aspects of information 
are based on three fundamental concepts: objects (called "entities" in Chen's 
approach), properties, and relations (relationships). In some approaches a fourth 
concept, time, can also be regarded as fundamental. The methodologies assume that 
any piece of reality that is informed about by some collection of information can 
be conceptualized and modelled in terms of these basic concepts. The piece of 
reality, which is the object of the conceptualization and modelling for a more or less 
well-defined purpose, is called the object system or, with a term from logic, the 
universe of discourse; see also (ISO-rapporten). 

In this paper the term "entity" will be used in a general and "neutral" sense to refer 
to all types of components of the object system: primitive components like objects, 
properties, relations, and time, as well as derived components like variables and 
values. 

2.2 The theory of elementary messages and the principles of entity/reference 
and instance/type distinction 

According to Langefors (1966) the information itself consists of messages. The 
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smallest type of message that conveys meaningful information is called an 
elementary message, or e-message. There are two types of e-messages: property 
type e-messages, and relational type e-messages. 

An e-message of property type tells that a certain object in the universe of discourse 
has a certain property at a certain time. 

An e-message of relational type tells that two or more objects are related to each 
other in a certain way at a certain time. 

Entities in the object system are referred to by names or other types of references. 
A name is a direct, explicit reference to an object system entity. A reference is 
either a name or an expression in terms of other names and references. In this 
paper a formal language INFOL, based on the conceptual algebra (see Sundgren 
(1989)) will be used for forming reference expressions. A summary of the formal 
specification of INFOL is given in an appendix to this paper (section 4). 

It should be noted that names and references, being the constituents of messages, 
and belong to the "information sphere", whereas the entities that they refer to 
belong to the "object system sphere". It is an extremely important principle of 
informatics to distinguish between these two spheres; this is something that every 
professional programmer is painfully aware of, since he has almost certainly many 
a time caused himself a lot of trouble by mixing up the name of a variable with the 
variable itself, but it is an equally important principle in the theory of information. 
We shall refer to this principle as the entity/reference distinction principle. 

It follows that the structure of an e-message can be described by the following two 
patterns: 

Property type e-message: <p (o), p (p), p (t) > ; 

Relational type e-message: < < p (oj), ..., p (on) >, p (Rn), p (t) > ; 

where "o" and "o/1 denote objects, "p" denotes a property, "Rn" denotes an n-ary 
relation, "t" denotes a time entity (which can be either a point of time or a time 
interval), and "p (x)" denotes a reference to entity x. 

Properties are often (but not always) thought of as < variable, value > pairs. For 
example, the property of "being 25 years old" can be thought of as a variable "age" 
taking a value "25" from its domain of possible values. The structure of this 
conceptualization of a property type e-message is: 

Variable/value type e-message: <p(o), <p(V) = p(a)>,p(t)>; 

where "V" denotes a variable, and "a" denotes a value belonging to the domain of 
values, or value set, of V. 

We formulated above the entity/reference distinction principle. An equally 
important principle, for informatics in general and for conceptual modelling in 
particular, is what we may call the instance/type distinction principle. Like the first 
one, this princiciple also has its roots in classical philosophy. 
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According to all OPR/ER methodologies for modelling the semantics of infor­
mation, the universe of discourse is conceptualized on two levels of abstraction: the 
type level and the instance (or occurrence) level. 

On the instance level, we think of the real world as a (time-varying) collection of 
individual object instances, where each object instance is associated with a (time-
varying) collection of individual property instances and related in to a (time-varying) 
collection of other object instances. 

On the type level, we recognize that there is often a subcollection of object 
instances that are "similar" in some sense that makes it justified to regard them as 
instances of one and the same object type. Usually every object instance of a 
universe of discourse is considered to belong to at least one object type. 

Similarly, most property instances in an object system can be categorized into 
property types. Within a certain property type the properties are "similar" in some 
sense that makes it natural to think of them as "values" of one and the same 
"variable"; cf the variable/value e-message format above. In the literature on 
conceptual modelling, the term "attribute" is often used with the same meaning as 
we use "variable" here, that is, to denote property types. 

Similarly again, the individual relationships that hold between an object instance of 
a certain type and one or more instances of other (or even the same) object types 
can also be classified into "subcollections of similar relationships" or relation types. 
För example OWN could be a relation type, the instances of which relate instances 
of the object type PERSON with instances of the object type CAR. 

Note. In practice it is often difficult to maintain the instance/type dualism in the 
terminology used for the concepts. One and the same term may be used to refer to 
the corresponding instance/type concepts; for example, the term "object" may be use 
to refer to both "object instance" and "object type". Of course, such ambiguity should 
only be tolerated if the applicable abstraction level is perfectly clear from the 
context; otherwize the qualifiers "instance" and "type" must be used. 

If we apply the principles of entity/reference distinction and instance/type 
distinction to the theory of elementary messages, we may define an important type 
level concept in the sphere of information: the concept of elementary information 
kinds, or e-message types. There are two major categories of e-message types: 

Attributive e-message types: < p (O), p (V), p (T) > ; 

Relational e-message types: < < p (Oj), ..., p (On) >, p (Rn), p (T) > ; 

where "O" and "O" denote object types, "V" denotes a variable (an attribute), Rn 

denotes a relation type, and "T denotes a time domain (a set of time points or time 
intervals). 

In the infological language INFOL an attributive e-message type is referred to by 
expressions with the following format: 

e-message type reference: <object type reference>.<variable reference>; 
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In the simplest special case, the reference has the form 

<object type name>.<variable name>; 

Examples: PERSON.name, PERSON.sex, PERSON.age, CAR.registrationnumber. 

In most languages for specification of information, like query languages for 
databases, the time component is often left out completely in references to 
information kinds. Leaving out the time component usually does not mean that the 
time component is irrelevant. It only means that it has not been captured in the 
formal specification of the information; it is either implicitly understood (by a 
human) from the context, or it is dwelling somewhere else in the metainformation 
accompanying the information itself. This could be regarded as an important 
imperfection in the present state of the art of information specification languages. 

In INFOL a time component could easily be added to the format stated above: 

e-message type reference: 
<object type reference>.<variable reference>(<time reference>); 

Examples: PERSON.age(1990-07-01), PERSON.income(1990). 

Relational e-message type references can often be seen as implicit components of 
reference expressions evaluating to variable references. A simple example is "the 
mother's age of a person", where "person" is an object type, and "the mother's age" 
is a variable of "person"; of course this attributive e-message type is derivable from 
the relational e-message type < < "female person", "person" >, "mother of, T> and 
the attributive e-message type < "person", "age", T>. In INFOL this definition would 
be expressed in the following way: 

PERSON.motherage <— MOTHER.age; 

based on the assumption that "PERSON" has been specified as an object type, "age" 
has been specified as a variable of "PERSON", and "MOTHER" has been specified 
as a (binary) relation between "PERSON" and (a subtype of) "PERSON". (The 
arrow "<—" denotes "is defined as".) "MOTHER.age" is an expression, which 
according to the syntax rules of INFOL evaluates to a variable reference, where the 
variable is supposed to relevant for the current object type, in this case "PERSON", 
which is made "current" by the expression to the left of the arrow. 

2.3 Object classifications and generic hierarchies 

In the original versions of OPR/ER methodologies there were only the two levels 
of abstraction that result from the instance/type distinction principle. Over the 
years, starting with Smith & Smith (1977), several additional levels and dimensions 
of abstraction have been identified, which facilitate a semantically richer analysis 
and modelling of information. 

We have seen that the instance/type abstraction applied to objects is essentially a 
classification of object instances into object types. There is no reason why a 
classification process could not be repeated in such a way that we get an n-level 
classification hierarchy. Such classification hierarchies are alternatively called 
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generalization/specialization hierarchies or generic hierarchies. For example, the 
object type PERSON may be specialized into the subtypes MALEPERSON and 
FEMALEPERSON, and the object types BIKE, CAR, and BUS may be 
generalized into the supertype VEHICLE. 

In generic hierarchies, variables are inherited from supertypes to subtypes, and so 
are properties, which are common for all objects in a supertype. Thus all variables, 
which are relevant for the object type PERSON, will also be relevant for the 
subtypes MALE_PERSON and FEMALE_PERSON, and all instances of both 
subtypes will automatically inherit all properties which are common for all instances 
of the PERSON supertype, like "having two eyes". On the other hand, the subtype 
will have certain variables and properties, which distinguish them from other 
subtypes on the same level in the generic hierarchy. For example, MALE_PERSON 
may have a variable "military service done?" and FEMALE_PERSON may have a 
variable "number of pregnancies". Furthermore MALE_PERSON will have the 
unique common property sex = "male", whereas FEMALE_PERSON will have the 
unique common property sex = "female"; this implies also that "sex" is a variable (of 
the supertype), which serves as a classification key for the classification into 
subtypes. 

A generic hierarchy may be graphically visualized as in figure 1, which also contains 
the relevant definitions expressed in the INFOL language. 

In statistical surveys object classifications and generic hierarchies occur in several 
forms and for different purposes. For example, within a certain population different 
subsets of objects, called domains of interest, or domains of study, are usually 
specified. The subsets may be specified one by one (cf INFOL expressions on the 
form " < object type reference > with < property reference > ") or as a crossclassifica-
tion by means of a Cartesian product of variables (cf INFOL expressions on the 
form "< object type reference > by < variable reference >", where the variable 
reference may be an expression evaluating to a Cartesian product of variables. 

Examples: 

Single subset: PERSON with citizenship = "foreign"; 

Crossclassification: PERSON by agegroup x sex; 

Subsets of populations are also specified for stratification purposes. Although the 
purpose is different, the specification of a stratum can formally be expressed in 
exactly the same ways as specifications of domains of interests. 
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Figure 1. Graphical illustration (with accompanying INFOL definitions of the 
classification hierarchy "person sbysex"). 

2.4 Abstraction by statistical aggregation 

It should be noted that there is only one basic collection of object instances which 
is classified in a classification hierarchy. This abstraction mechnism should be 
carefully distinguished from another one, which is very typical for statistical 
information: the statistical aggregation hierarchy. (Unfortunately there is again 
another type of aggregation, which has nothing to do with the statistical concept of 
aggregation; see Smith & Smith (1977).) 

The meaning of statistical aggregation can be described in two steps. The first step 
is an object classification of any of the types described in the previous section 
(including the special cases of subtyping and crossclassification). 

In the second step of statistical aggregation the instance/type distinction is "moved 
one level" with respect to the objects and object classes in the object classification 
hierarchy defined by the first step. This creates "a higher level of abstraction", where 
the object classes (types, subtypes, and supertypes) in the classification hierarchy 
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will now be regarded as object instances rather than as object types. These 
"collective object instances" will be called aggregated object instances, and the 
corresponding "collective object type" will be called an aggregated object type. 

As an example we may consider the classification hierarchy "persons_by_sex" in the 
previous section. The individual persons are the object instances in this classification 
hierarchy, and the object classes (populations and domains of interest) "PERSON", 
"MALEPERSON" and "FEMALEPERSON" are the object types, making up a 
supertype/subtype hierarchy. Applying the statistical aggregation abstraction 
mechanism to this hierarchy implies a change of perspective, so that the object 
classes are no longer looked upon as object types (only), but (also) as object 
instances on a higher level of abstraction. The object type for these collective 
instances could be called (in this example) PERSONGROUP. This object type has 
three instances according to our definitions: 

PERSONGROUP = {PERSON, MALEPERSON, FEMALEPERSON}; 

= {PERSON by sex}; 

= (PERSON by sex).agg; 

The two last lines above illustrate two alternative INFOL formalisms for expressing 
derivation of object types by statistical aggregation; one uses the set brackets, {...}, 
and the other one an operator, agg, to indicate the aggregation abstraction. 

Like other objects the object instances of PERSON_GROUP may have properties, 
and these properties may be expressed in terms of variables for PERSON_GROUP. 
The properties and variables of aggregated objects are very often derivable by some 
type of aggregation process (frequency counting, summarization, computing of 
averages, percentages, variances, correlations, etc) from properties and variables of 
the object instances on the next lower aggregation level. 

Thus aggregation of object types and aggregation of variables often go hand in 
hand. This is also reflected in the INFOL formalism. Instead of writing 

(PERSON by category).agg.count (or, equivalently, {PERSON by category}.count); 

it is possible to write 

(PERSON by category).count; 

In the latter writing an operator like count (or sum, avg, etc), which aggregates the 
values of a variable for a (possibly classified) set of objects, implies a preceding 
object aggregation, as expressed by agg or {...}. 

As an example of statistical aggregation we may again consider a group of persons 
that is classified according to their sex into males and females. As long as we do 
only this, it is a pure classification hierarchy. As we have seen, the classification can 
be used for structuring the information into subsets, which are homogeneous with 
respect to relevant variables and common properties. 

However, we may also start to derive properties of the sexgroups as such, for 
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example by simply counting or estimating the number of persons belonging to each 
group, or by computing or estimating the average income for each group on the 
basis of the incomes of (a sample of) the respective person instances. On the lowest 
abstraction level (aggregation level) the object instances will be persons having 
incomes. On the next level there will be only two instances: "males" and "females" 
having their respective cardinalities and average incomes as properties. 

An aggregation hierarchy may be graphically visualized as in figure 2. The figure 
also gives some example of the INFOL syntax by showing the definitions for the 
derivable concepts in the figure. 

Abstraction by means of aggregation is one of the most typical semantical features 
of statistical information. The prefixes micro- and macro- are often used to 
distinguish between statistical information before and after aggregation. Sometimes 
the very term statistical information is actually reserved for macroinformation, that 
is, information that has been subject to some type of aggregation process. However, 
we shall follow here the more common practice of letting both microinformation 
and macroinformation be called statistical information, as long as the purpose (or 
at least one of the most important purposes) of the microinformation is to serve as 
a basis for aggregation processes and other forms of statistical information 
processing. 

In many statistical information systems the input information consists of unaggre-
gated microinformation, whereas the output information consists of aggregated 
macroinformation. However, this is a rule with exceptions. For example, if a 
national statistical office collects economical information from companies, this 
information is microinformation for the survey processing in the statistical office, 
but for each one of the companies contributing to the survey, the contributed 
information is likely to be aggregated from numerous economical transactions inside 
the company. 
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Figure 2. Graphical illustration of an aggregation hierarchy; with INFOL definition 
expressions. 

Thus the micro/macro distinction is relative rather than absolute. If microlevel 
objects are classified and abstracted into macrolevel objects, these object can again 
be regarded as microobjects and be subject to classification and abstraction into 
macroobjects on a yet higher level of abstraction. A special case is if the original 
classification is a hierarchical classification consisting of more than two levels. An 
example of statistical aggregation based on a multilevel classfication hierarchy is 
shown in figure 3. The figure also shows how such a multilevel object aggregation 
hierarchy can be graphically represented in a more compact way. 
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Figure 3. A multilevel object aggregation hierarchy. 

2.5 Value aggregation and hierarchical variables 

As illustrated by the last example above, multilevel object aggregation often goes 
hand in hand with hierarchical variables like region# = county#:municipality#. A 
hierarchical variable is a variable with a hierarchically structured value set, and a 
hierarchically structured value set is a value set, which can be seen as the result of 
a value aggregation process similary to the object aggregation process described in 
the previous section. 
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Object aggregation starts with the set of object instances of an object type. Value 
aggregation analogously starts with the set of values of a value type. The values are 
classified into subsets of the value set, and each one of these subset is then, after 
abstraction, regarded as a value "on a higher level". The higher level values are thus 
defined as an aggregation ( = classification + abstraction) of the lower level values. 

For example, suppose that we start with a value type having the value set 

V = {1, 2, 3, 4, 5, 6}; 

and that this value set is classified in the following way: 

A = {1, 2, 3}; B = {4}; C = {5, 6}; 

Now we may abstract the subsets A, B, and C into higher level values of a higher 
level value set 

W = {A, B, Q ; 

which we may write 

W = {A{1, 2, 3}, B{4}, C{5, 6}}; 

in order to indicate the definitions of the higher lever values in terms of the lower 
level values. By taking the union of V and W we finally get a complete, hierarchi­
cally structured value set of two levels: 

U = {A{1, 2, 3}, 1, 2, 3, B{4}, 4, C{5, 6}, 5, 6}; 

We can see that each reference to a higher level value includes the definition of the 
value in terms of the lower level values. Thus the specification of the new, 
hierarchical value set includes both the values and the structure between the values. 
However, the naming convention used here is not very practical. A more practical 
way of referring to the values, which still retains the structure visible, would be the 
following one: 

U = {A, A:l, A:2, A:3, B, B:4, C, C:5, C:6}; 

The lower level values are referred to by a "family name", indicating the "parent 
value" on the next higher level in the hierarchy, and a "first name", indicating the 
"member of the family". An even more common practice is to rename the low level 
values, using the fact that the "first names" need be unique only "within the family": 

U = {A, A:l, A:2, A:3, B, B:l, C, C:l, C:2}; 

Now we have finally arrived at the typical pattern for naming values in hierarchical 
value sets. It is also customary to give a name to a hierarchical value set that 
indicates the hierarchical structure by having a name component for each level in 
the hierarchy. Example: 

region = county : municipality; 
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Like in this example, the hierarchically structured name need not be the only name 
of the value set. Note also that the naming conventions just described actually imply 
some ambiguity. In the just given example, it is easy to conclude that a region value 
name consists of two parts: a county value name, and a municipality value name. 
However, this is in a way both true and not true. As described above, the 
municipality name would consist of two parts: a "family name", and a "first name". 
The family name of a municipality value is actually the same as the (complete) 
name of a county value. Thus the complete municipality value name consists of a 
complete county value name together with the first name of the municipality; the 
latter is only unique "within the family". If we call the complete name of a 
hierarchical value "the long name", and the first name part "the short name", we get: 

region value name = county value name : short municipality value name; 

long municipality value name = county value name : short municipality name; 

However, in practice the term "municipality value name" would often be used 
ambiguously to denote both the long and the short municipality name. To make it 
even more concrete: if "region code" consisted of four digits, where the first two 
digits would identify a county, and the last two would identify a municipality within 
a given county, the last two digits would probably often be referred to as "the 
municipality code", although it would only be the short name part of the complete 
municipality code. This ambiguity is a source of some confusion when discussing 
hierarchical variables and hierarchically structured value sets. 

The discussion here about two-level hierarchical variables and value sets can easily 
be generalized to n levels. 

2.6 Sampling and estimation 

Beside aggregation, sampling is a typical process in many statistical information 
systems, as well as "the twin process" of estimation based on sampled information. 
How can we model the semantics of sampled statistical information and of the 
processes of sampling and estimation? Figure 4 illustrates one possible way of 
tackling these problems, using some of the extensions to ordinary OPR modelling 
that have been introduced in this paper. 
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Figure 4. An object graph - with accompanying INFOL definitions - corresponding 
to a sample survey. 
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The example used in figure 4 is a hypothetical sample survey, where the population 
is a set of object instances belonging to the object type PERSON. We know the 
values of some variables for all the instances in the population: person#, region, and 
category. Population characteristics (parameters) that are functions of these variables 
can be estimated (computed) by evaluting the function over the object instances in 
the population. On the other hand income is a variable which is assumed to be 
relevant but not known for the object instances of the PERSON population. Instead 
it should be estimated after observing a sample of PERSON objects. The sample 
is supposed to be taken on the basis of random sampling from subsets of the 
population formed by stratification. Every object instance within a certain stratum 
has equal selection probability n/N, where n is the number of instances to be 
selected from the stratum, and N is the total number of instances in the stratum; 
n/N varies between strata. 

The OPR-model for the sample survey contains two object types corresponding to 
the (generic) object type PERSON: PERSONINPOPULATION and 
PERSON_IN_SAMPLE; there is a partial one-to-one relation between the two 
object types. The two other object types in the model, STRATUM and 
PERSONGROUP OFINTEREST, are formed by statistical aggregation of (any 
one of) the PERSON object types. The formal definitions, expressed in INFOL, can 
be found in the text under the object graph. The meaning of the object type 
STRATUM is obvious from the name. The object type PERSONGROUPOFIN-
TEREST is an object type, whose instances are domains of interest or domains of 
study in the sense of Marriott (1990), that is, subgroups of the population (including 
the population as a whole) which are of particular interest for the users of the 
statistical results derived from the survey. 

Many of the variables for the object types are derivable from other variables; once 
again the definitions are stated in INFOL below the object graph. Variables for 
which data are not available (like income for PERSONINPOPULATION) are 
indicated by a small ring (°) after the variable name. 
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3 Syntactical properties of statistical information 

3.1 Input-oriented structures of statistical data: questionnaires and forms 

A questionnaire or form for eliciting statistical data from an informant (respondent) 
has often a hierarchical structure. The root node in the hierarchy corresponds to an 
object, which is either the respondent or an object that the respondent can inform 
about. The other non-leaf nodes in the hierarchy usually correspond to objects that 
are dependent upon the root-node object. The leaf nodes, finally, are the individual 
questions (or groups of questions) of the questionnaire, and they correspond to 
variables (or groups of variables) of the objects in the non-leaf nodes. 

Like many other types of hierarchical structures, the structure of a questionnaire 
can be described by means of a structure diagram, containing the three structure 
elements known from structured programming: sequence, selection, and iteration 
(repetition); see for example Dahl, Dijkstra, and Hoare (1972) and Jackson (1975). 

Figure 5 illustrates the structure diagram technique applied to an imaginary 
questionnaire concerning a person's educational background. The diagram should 
be read as follows. The data collected by the questionnaire consists of four major 
parts, corresponding to four major sets of questions: first the person is asked for 
some background information (name, date_of_birth, sex etc), then there are some 
questions about the basic education that every person is supposed to have, then 
those people who have undergone some vocational training are asked to supply 
some information about this, and finally those who have completed one or more 
programmes of higher education are asked to supply some details about these. Thus 
there are two mandatory and two optional parts of the questionnaire. A small ring 
or zero in the upper right part of a box indicates an optional part that will apply 
once, if it applies at all; an asterisk in the same position indicates an optional part 
that may be repeated. In this particular questionnaire, the respondent is assumed 
to have zero or one vocational trainings to inform about, where as the number of 
higher educations may be zero, one or more. If we look at the details of the main 
parts of the questionnaire, we can see, for example, that both a basic school 
education and a higher education programme are supposed to consist of a (variable) 
number of education component, where each component consists of a subject 
(course) and an optional judgement (score). 

The questionnaire in this example, like many a real-world statistical questionnaire, 
has a rather complex structure. Nevertheless, it can relatively easily be mapped into 
the typical flat file structure of a relational database. (As a matter of fact, any state-
of-the-art relational database management system would supply a forms-oriented 
user interface, where the user could define a hierarchical questionnaire like the one 
in the example, and have the data in it automatically mapped into a specified 
relational structure.) 

One way of designing the mapping between a statistical questionnaire and a 
relational database is to proceed in the following three steps: 

Step 1. Model the hierarchical structure of the questionnaire using the diagram 
technique in figure 5 or some equivalent formalism (for example the PASCAL-
based methodology used in the Dutch system BLAISE; see Bethlehem et al (1987). 
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Step 2. Develop the OPR-model underlying the questionnaire, unless it already 
exists; it is always possible to find a conceptual OPR-model, which will make it 
possible to define the hierarchical questionnaire structure as a view, or external 
schema, in database terminology. 

Step 3. Transform the OPR-model into a relational data model. This can always be 
done by applying some simple transformation rules; See Sundgren (1984) and 
Elmasri and Navathe (1989). 

Figure 5 illustrated the result of step 1 for a simple example. Figures 6 and 7 
illustrate the results of step 2 and 3 for the same example. 

Figure 5. Structure diagram illustrating the typical, hierarchical structure of a 
statistical questionnaire. (The diagram technique follows Jackson (1975), but some 
conventions have been adopted, which make the diagram more compact.) 
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Figure 6. An object graph showing the OPR-model underlying the hierarchical 
structure of the statistical questionnaire in figur 5. 

Figure 7. A relational data model corresponding to the conceptual OPR-model in 
figure 6 and the questionnaire in figure 5. 
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3.2 Output-oriented structures of statistical data: statistical tables 

There are several techniques, known from the literature, for describing the 
semantical and syntactical structure of statistical tables; see for example Shoshani 
(1982) and Sato (1988). One problem is to which extent semantical and syntactical 
aspects of the table structure should be treated separately, and to which extent they 
should be mixed together. From a purely syntactical point of view, the most 
fundamental structure is the two dimensions of the paper or screen upon which the 
table is usually presented. On the other hand, from a purely semantical point of 
view, the basic structure is determined by (a) the principal logical parts of the 
definition of the information contents of a table, and (b) the components of each 
one of these logical parts. 

In my opinion it is unnecessarily complex to describe and understand the syntactical 
structure of a statistical table, without having first a good semantical analysis of the 
table. 

A statistical table is a structured representation of a structured set of statistical 
messages. Let us consider a cell in a typical statistical table. It usually contains a 
number, and it is further characterized by its place in the table structure, together 
with the textual information associated with this place (head and stub texts etc). 
The data and the associated metadata of a cell in a table represents a piece of 
statistical information that we can call a statistical e-message. Referring back to the 
general definition of an e-message in section we will identify most statistical e-
messages associated with table cells a special case of property type e-messages, 
consisting of an object part, a property part, and a time part. 

The object part of a statistical e-message refers an object group, which is a 
population of objects of interest, or a subset of such a population, a so-called 
domain of interest, or domain of study. With the modelling perspective of section 

, the object group is a macro-object resulting from an abstraction by aggregation. 
Thus the macro-level object can be defined in terms of a micro-level object type 
and a property giving a restriction to a subtype: 

< object type> with < property >; 

Example: 

PERSON with sex = "female" and age < 20; 

The property part of a statistical e-message typically refers to a < variable, value >-
pair, where the variable is a so-called parameter or characteristic of the domain of 
interest referred to by the object part of the message, and where the value is the 
value referred to by the number in the table cell. Example: 

estimated_average_income = 15000; 

The time part of a statistical e-message can be a point of time (if the e-message 
informs about a state in the domain of interest) or a time interval (if the e-message 
informs about a change in the domain of interest. The time part is often the same 
for all the statistical e-messages in a table, and then it can be mentioned in the 
table head only. However, if the table contains statistical information that is 
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organized as one or more time series, common time parts for subcollections of e-
messages (cells) may appear in column heads or in the stub. 

Thus an example of a complete statistical e-message could be: 

In the introduction to this section we defined a statistical table as a structured 
representation of a structured set of statistical messages. Many tables appearing in 
statistical presentations have a very regular structure, at least from a semantical 
point of view. In fact it could be argued that even tables, which are not quite so 
regular, could and should be thought of as being built up from components that are 
regular. The regular structure that we are now going to discuss has been referred 
to in the literature as the box structure or matrix format of statistical tables. 

A box is an n-dimensional structure defined or "spanned" by n variables, called y -
variables. The Cartesian product of the value sets of the n y -variables defines the 
cells of the box. Each cell contains a vector of m values of m variables, called 6-
variables. The 6-variables are the same for all cells in a box, and they are supposed 
to be statistics or estimated parameters for domains of interest corresponding to the 
respective cells. The domain of interest associated with a particular cell is defined 
by (a) the population property, sometimes called the a -property, which is the same 
for all the domains of interest corresponding to all the cells in the box, and (b) the 
property distinguishing the particular domain of interest, associated with the 
particular cell, from the domains of interest of the other cells in the box; the latter 
property is called the y -property, since it is defined by a logical and-combination 
of n <y-variable, value > -pairs: 

For example, the information defined by the INFOL-expression 

{PERSON(with nationality="foreign")(by sex x region)}.est_avg_income( 1990) 

can be organized as a two-dimensional box spanned by the y -variables "sex" and 
"region". Each cell would contain a value of the 6-variable "est_avg_income(1990)" 
for a domain of interest defined by the a -property "PERSON(with nationality = 
"foreign")" and a y-property defined by a certain <sex value, region value > 
combination. 

In terms of the relational data model, a box can always be represented by a 
relational table, having a column combination corresponding to the n y -variables 
as its primary key, and columns corresponding to the m 6-variables as additional 
columns. In the example above, we would get the following relational table, if we 
assume that "region" has three values: A, B, and C; 
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This mapping of a box structure to a relational table could be regarded as a normal 
representation of statistical tables. Naturally, in many situations one like a 
representation for presentation purposes, which looks quite different from this 
normal representation, but with contemporary computer technology and software 
tools, it should not be difficult for a user to transform a table, stored according to 
the normal representation, into his or her preferred format in a particular usage 
situation. On the other hand, for facilitating automatic exchange of statistical data 
and metadata, it would be extremely valuable if a standard representation format 
could be agreed upon. Work in this direction is presently going on within 
international organizations; see 

Of course the example used above for illustration purposes is extremely simplified. 
There are many qualifications that need to be added. Consider the following list of 
problem areas: 

sums on different levels; 

hierarchical variables; 

sparse tables; 

null values; 

time; 

Derivable data like sums can be represented explicitly or implicitly. Implicit 
representation means that we indicate in our metadata description of a table that 
we want the sums to be computed, whenever the table is presented to the user. 
(Naturally different users, and even the same user, can have different definitions of 
the same table for different purposes.) Explicit representation of derivable data 
implies redundance but may speed up retrieval. Generally speaking, redundance 
means additional storage costs and updating problems; however the updating 
problems need not be too severe in statistical databases, since they are often quite 
statical by nature, and updated incrementally only. 

In a specification and query language like INFOL, we may indicate by a suitable 
symbolism, which total and partial sums that we would like to specify. Example: 
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{FOREIGNER(by sex(*, 2(*)) x region(A, B, S (A, B), C, E (*))}. 
est_avg_income( 1990) 

First of all, we have here introduced the name "FOREIGNER" to mean the same 
as "PERSON(with nationality = "foreign")". Then we have indicated, variable by 
variable, which values and (total and partial) sums that we want to be available for 
a particular usage of aggregated data. For example, an asterisk (*) indicates the 
selection of all values in the value set for a particular variable, and S (...) indicates 
that the 6-variables should be aggregated over the listed values of the y -variable 
(according to the proper formula for each variable, depending on whether it is a 
total, an average, a percentage, or whatever). 

The normal form representation of this selection would be: 

As can be seen from this example, the introduction of a summary level for a y -
variable is equivalent to extending the value set with one element. With one 
summary level introduced for "sex" and two for "region", the cardinalities of the 
value sets will grow from 2 to 3, and from 3 to 5, respectively, and the number of 
rows in the relational table will grow from 2 x 3 = 6 to (2 + 1) x (3 + 2) = 15, 
that is, by 150% in this case. 

Null values can be treated in much the same way as summary values. 
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One or more of the y -variables can be hierarchical variable. A hierarchical variable 
of k levels will be represented by k columns in the normal format relational table. 
For each level in the hierarchy, one or more summary values may be introduced. 
However, the summary values for different levels in the hierarchy cannot be chosen 
as independently of each other as they can for the variables in a crossclassification. 

As an example, we may assume that "region" in the example above is a two level 
hierarchy "county:municipality", where county A consists of the municipalities Al 
and A2, county B consists of the only municipality Bl, and county C consists of the 
municipalities CI, C2, and C3. The information specified by the INFOL expression 

{FOREIGNER(by sex(*) x county(*, 2(*)) : municipality^, 2 (*))}. 
est_avg_income( 1990) 

would have the normal form representation (only the first part of it is shown): 

So far we have assumed without discussion that the time component of the 
statistical table should be associated with the fi-variable(s) and the column(s) 
representing the 6-variables. However, there are several alternatives, corresponding 
to slightly different semantical interpretations of the data, and with different 
performance characteristics, if implemented in a relational database. 

If the table is a typical snapshot representation of the object system, there is only 
one time involved, and this time could be indicated in the metadata accompanying 
the table as a whole. In the example above, the relational table could for example 
be named "FOREIGNER(1990)M. 

If there are repeated snapshots, there could be uniform tables for different times, 
with names containing a time parameter. Example: "FOREIGNER(t)", where t = 
1980, 1985, 1990. Another alternative is to put time as a parameter in the names 
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of the 6-variables. Example: Mest_avg_income(t)", where t = 1980, 1985, 1990. 

A third alternative is to regard time as a y -variable, which is crossclassified with the 
other y-variables. This implies a slight change in our conceptualization of the 
population of interest. If the "snapshot version" of our population of interest is 
assumed to contain objects of a certain type OBJ, a corresponding population with 
extension in time would constist of < OBJ, time > pairs, and interest groups would 
be formed by crossclassifying this population by means of the Cartesian product of 
the original y-variables with an additional y-variable that is based on time. 

Example: 

The normal relational representation of this conceptualization would be: 

Summary values can be defined as in previous examples. However, it should be 
noted that the meaning of summary values formed over the time y -variable may not 
be obvious. In fact it would very often not be meaningful at all. 

Yet another modelling of time will be necessary for event-based statistical 
information. In contrast to the snapshot-based statistical information that typically 
emanates from a statistical survey of traditional type, event-based statistical 
information often comes from other than statistical sources, for example administra­
tive registers and other administrative information systems. Such systems are more 
or less directly updated, when events of certain types occur in the object system. 
The flow of such events (and consequent updates) is more or less continuous, and 
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the updating transactions must be time-stamped. As a matter of fact the events will 
be a basic object type, forming at least one of the populations of interest, in the 
conceptual model for this type of statistical information. The time of the event will 
be a variable of the event object, and if the value set of the time variable is 
properly classified (grouped), it can serve as a y-variable very much like other y -
variables in the aggregation and tabular presentation of statistical information. For 
this type of time y -variable, the formation of summary values is usually meaningful 
and often useful, since it is meaningful to count events over different periods of 
time, and to summarize other variables for these events. 

Apart from events, processes is another type of object, which sometimes occur in 
event-based statistical systems. A process is characterized in the time dimension by 
a starting-point (associated with a process birth event) and a completion-point 
(associated with a process death event). Processes can be treated similarly as events 
in the aggregation of statistical information. 

So far we have discussed the semantical structure of statistical macroinformation, 
and how it can be represented by relational tables in a kind of canonical form for 
statistical macrodata. However, we still have to discuss desirable presentation 
structures for statistical macrodata, as well as operators needed to transform the 
statistical macrodata from the normal representation form to other desirable 
formats. In this paper I shall only give a few hints about these topics. 

The most straightforward presentation of a box structure of statistical data that is 
stored in its normal relational form is a listing of the relational table, row by row. 
Such a presentation would not be satisfactory in many situations, even if one made 
some cosmetical improvements, such as suppressing y -variable values whenever they 
are identical with the corresponding values in the previous row. A transformation 
of a slightly more complicated nature, which is often desirable, is to move one or 
more of the y -variables from the stub of the table to the column heads. Example: 
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The moving of the y -variable "sex" from the stub to the column headings in this 
example can be done by operations in an extended relational algebra. However, it 
is a relatively complex operation, and it implies a non-uniform handling of the value 
names for y-variables in the stub and y-variables in the column headings; the 
former are normal data in the relational table, whereas the latter must be part of 
the column names. 

A much more attractive solution to this problem (and similar ones) is to define a 
box algebra, that is, an algebra the operators of which transform boxes into boxes 
of another structure. Such algebras have been proposed and implemented; see for 
example Nilsson (1984). 

Another type of problem arises when the user wants to have the aggregated 
statistical data presented in a non-regular form, that is, a form which is not 
compatible with the box structure as such. Usually, however, such non-regular 
presentation structures can be constructed from a small number of regular boxes. 
A relatively common situation is when the user wants to present in the same table 
the contents of two boxes that have all y-variables except one (more general: k) in 
common. Example: 
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4 Appendix: A formal specification of the INFOL language 

4.1 The metalanguage of the formal specification 

[...] The brackets embrace something that may be omitted. 

[...]* The construction within the brackets may be repeated a variable 
number of times (zero, one or more), with a comma between the 
repetitions; in other words the whole construction is a list (an ordered 
set) of constructions of the same kind. 

<...> Indicates that at this place in a construction there should be an 
element of the type mentioned within the broken brackets. 

... <— ... The structure of an INFOL definition. The construction to the left of 
the arrow is what is defined by the definition. The construction to the 
right of the arrow is the construction which defines the construction 
to the left. 

... ::= ...; The structure of a metalanguage definition. 

| Denotes logical "or" in metalanguage definitions, that is, indicates 
alternative construction possibilities. 

obj object 

prop property 

rel relation 

var variable 

val value 

ref reference 

relop relational operator (<, =, >, etc) 

4.2 INFOL constructions 

(1) 

(2) 

(3) 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(H) 

(12) 

4.3 Informal comments, qualifications, and explanations 

First a general comment. The first object type referred to in an INFOL expressions 
will be the first current object type when the expression is processed (by a human 
being or otherwize). The current object type will be changed as a result of certain 
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constructions that appear in INFOL expression. For example, a path reference will 
"move" the current object type from one object type to another, via still other object 
types, which are "nodes" on the path. The properties, variables, and relations, 
referred to at a certain place in an INFOL expression, must be compatible with the 
current object type at that place. For example, if a variable is referred to, it must be 
relevant for the current object type at the place of the variable reference. Now will 
follow a numbered sequence of further comments related to the formal definitions 
with the corresponding numbers in the previous section: 

(1) A practical convention is to let the object aggregation operator agg be 
implied, if it is followed by a variable reference that starts with an aggrega­
tion function like count, sum, or avg. Another possibility, which has been 
illustrated in the paper, is to use set brackets {...} around the classification 
expression, instead of writing agg after it. 

(2) Note that <var ref> includes a reference to a constant value as a special 
case; a constant value can be regardes as a special case of a function. 

(6) The arithmetical functions are the usual ones. String functions include 
concatenation and substring operations. Set functions include Cartesian 
product ( x ) and hierarchical combination (:). Aggregation functions include 
functions that operate on the values of zero, one, or more variables for a set 
of object instances and produce a single value as an outcome. In addition to 
the functions mentioned above, and a other statistical operators like those 
which compute variance and correlation, there are functions like max and 
min. 

(7) Intuitively speaking, a path connects two object type nodes in an object 
graph. The connection consists of a chain of segments, where the start node 
and the end node of every segment are object types that are directly related 
in the object graph. If there is only one direct relation between two nodes, 
a practical convention may be to omit the relation reference in the path 
description. Alternatively, it is always possible to omit a reference to an 
object type at the end of a segment corresponding to a binary relation, since 
the object type is uniquely determined anyhow. 

(8) The quantifiers some and all correspond to the existence quantifier (3 ) and 
the universal quantifier (V) known from predicate logic. 

(10) The definition of an INFOL entity consists in general of two parts. The first 
part is a declaration, which (a) declares the new entity to belong to a 
specified category (for example "object type"), and (b) gives a name to the 
entity. The second part of the definition is separated from the first one by 
an arrow (<-- ) , and it contains a derivation expression, that is, an 
expression for deriving the new entity from existing ones. Of course, the 
second part appears only if the new entity is derivable. If the first part of the 
definition is missing, it is an implicit definition; the category of an implicitly 
defined entity is implied by the context, and the name, if needed, will have 
to be automatically generated. 

(11) This seemingly simple expression actually covers the whole query language 
of INFOL, including so-called a 6-queries and a By -queries (see Sundgren 
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(1973)), and it can be regarded as a conceptual level counterpart to database 
query languages like SQL. 

(12) The first type of view definition creates a single-object view, that is, a view 
which arranges all information around one single object. The other type of 
view definition creates a multi-object view, containing several object types 
and relations. The single-object view is often useful as a basis for statistical 
tabulations. 
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