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Calibration Estimators and Generalized Raking Techniques 

in Survey Sampling 

Jean-Claude Deville 
INSEE, Paris 

Carl-Erik Särndal 
Université de Montréal 
and Statistics Sweden 

Abstract. This paper is about estimation of the finite population total in the presence of 

univariate or multivariate auxiliary information. Attention is focused on alternative weighting 

systems that reflect a given auxiliary information. There are two parts to the paper: (i) derivation of 

a weighting system with the aid of a distance measure and a set of calibration equations; (ii) an 

application to the case where the information consists of known marginal counts in a two- or 

multi-way table; this is called generalized raking. 

The general regression estimator (GREG) was conceived with multivariate auxiliary information 

in mind. It is ordinarily justified by a regression relationship between the study variable y and the 

auxiliary vector x. But the GREG can be derived by a different route by focusing instead on the 

weights. The sampling weight of the k:th observation is JT^ , where 7tk is the inclusion 

probability of k. We show that the weights implied by the GREG are as close as possible, 

according to a given distance measure, to the 7t̂  while respecting side conditions called 

calibration equations. These state that the sample sum of the weighted auxiliary variable values 

must equal the known population total for that auxiliary variable. That is, the calibrated weights 

must give perfect estimates when applied to each auxiliary variable. This consistency check on a 

weighting system is required by many practitioners. The GREG uses the auxiliary information 

efficiently, but the weights are not always without reproach. Negative weights can occur; in some 

applications such weights make no sense. It is natural to seek the root of the dissatisfaction in the 
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underlying distance measure. Consequently, we allow alternative distance measures that satisfy 

only a set of minimal requirements. Each distance measure leads, via the calibration equations, to a 

weighting system and thereby to a new estimator. These form a family of calibration estimators. 

We show that the GREG is a first approximation to all other members of the family; all of them are 

asymptotically equivalent to the GREG, and it is the already available variance estimator for the 

GREG that we recommend to use for any member in the family. Numerical features of the weights 

and ease of computation may become more than anything else the basis for choosing between the 

estimators. We apply the theory to calibration on known marginals of a two-way frequency table. 

Our family of distance measures then leads to a family of generalized raking procedures. Classical 

raking ratio is one of these.Variance expressions and easily calculated variance estimators are given 

for generalized raking estimators, and inference conditional on the estimated cell counts is among 

the topics discussed. 

KEY WORDS: Multivariate auxiliary information; Regression estimators; Raking. 

1. Introduction 

Survey statisticians use auxiliary information in many ways to improve survey estimates. One 

example is when the general regression estimator is used for the finite population total or mean. It 

depends on a vector of auxiliary variables for which the population total is known. The calibration 

estimators derived in this paper are a family of estimators that appeal to a common base of auxiliary 

information. A calibration estimator uses calibrated weights. These are as close as possible, 

according to a given distance measure, to the original sampling design weights 71̂  , while 

respecting a set of constraints, the calibration equations. To every distance measure corresponds a 

specific calibrated weighting and a calibration estimator.In Section 3, we define a family of 

distance measures and derive the corresponding family of calibration estimators. Their properties 

are established in a series of results. Variance estimators for calibration estimators arc given in 

Section 4. An important application is calibration on known marginal counts in multi-way tables. 
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Two-way tables are examined in Sections 6 to 9. The calculation of the cell weights, given one of 

our distance measures, can be described as generalized raking. Variance estimation for generalized 

raking and conditional inference for two-way tables are important topics in Sections 7 to 9. 

2. Deriving the general regression estimator by calibration 

Consider a finite population U = {1,..., k,..., N} from which a probability sample s (s Q U) 

is drawn with a given sampling design, p(-). That is, p(s) is the probability that s is selected. 

The inclusion probabilities 7tk = Pr(k e s) and 7Ck/{ = Pr(k & i 6 s) are assumed strictly 

positive. Let yk be the value of the variable of interest, y, for the k:th population element, with 

which is also associated an auxiliary vector value, xk = (xkl,..., xkj,..., xu )'. For the elements 

k G s, we observe (yk, xk). The population total of x, tx = Xu xk, is assumed accurately 

known. This knowledge may come from one or more sources: census data, administrative data 

files, etc. If A ( A c U ) is any set of population elements, LA is our shorthand for Xk6A' f°r 

example, Ls yk means Zk e s yk • 

The objective is to estimate the population total ty = Lu vk- Extending an idea of Lemel (1976), 

Deville (1988) used calibration on known population x-totals to modify the basic sampling design 

weights, dk = l/îtk, that appear in the Horwitz-Thompson estimator, t ^ = 1^ Yi/^k = ^s k̂Yk • A 

new estimator, tyW = Zs wkyk, is sought, with weights wk that are as close as possible, in an 

average sense and for a given metric, to the dk, while respecting the calibration equation 

(2.1) 

Here, Wĵ  would be a more appropriate notation for the sample dependent weights, but for brevity 
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we write just wk. The idea of modifying the d̂ . is found, in a different context, in Zieschang 

(1986). If Ep(-) denotes expectation with respect to the sampling design p(s), a measure of 

average distance reminiscient of the chi-square statistic is 

For more generality in this expression, we can let the k:th term have an individual, known positive 

weight 1/ck, unrelated to dk, which gives the average distance 

(2.2) 

The uniform weighting l/q^ = 1 is likely to dominate in applications, but unequal weights 1/qk 

are sometimes motivated; see Example 1 below. To minimize (2.2) subject to (2.1) holding for 

every possible sample s is equivalent to minimizing, for any particular s, the quantity 

subject to the single constraint (2.1). Minimization leads to the calibrated weight 

(2.3) 

where the Lagrange multiplier X is determined from (2.1), that is, 

(2.4) 

assuming that the inverse of 

(2.5) 

exists. The resulting estimator of ty is 

(2.6) 

where txn = Zs dkxk denotes the Horvitz-Thompson estimator for the x-vector, and 



5 

(2.7) 

is a weighted multiple regression coefficient estimator. Thus, Deville's (1988) calibration technique 

(a) provides an alternative derivation of the generalized regression estimator, see Cassel, Särndal 

and Wretman (1976), Gourieroux (1981), Särndal (1980), Isaki and Fuller (1982), Wright (1983) 

and others, and (b) shows that it is constructive to view (2.6) as a linear weighting method with 

sample dependent weights wk given by (2.3). Such a view was taken in Särndal (1982), who 

used the wk to create a variance estimator for ty,.^ (see Section 4 below), in Bethlehem and 

Keller (1987), and in Lemaître and Dufour (1987). The research question addressed in this paper is 

whether useful alternative estimators will result by using generalized distance measures. 

Example 1: Derivation of the ratio estimator. Take xk = xk, a positive scalar. Then xkX = 

xkX. Let us take o^ = l/xk. We obtain X = (Zu xkV(^s dkxk) - 1 = tjt^ - 1, whereby wk = 

dk(l+qkxkX) = dk(l + X) = dktx/tx7t, and from (2.6) t^g = ^ ty^/t^, the ratio estimator. The 

unequal weighting a^ = l/xk is essential for obtaining this result. • 

3. A class of alternative distance measures 

In (2.2), the distance between the original weight dk and the new weight wk was rather 

arbitrarily taken as (wk - dk)
2/2dkqk. It is natural to allow alternative distance measures sharing a 

few basic features. For element k, consider a distance Gk(w,d) such that: (1) for every fixed d 

> 0, Gk(w,d) is nonnegative, differentiable with respect to w, strictly convex, defined on an 

interval Dk(d) containing d, and such that Gk(d,d) = 0; (2) gk(w,d) = 3Gk(w,d)/3w is 

continuous and maps Dk(d) onto an interval Imk(d) in a one-to-one fashion. It follows that 
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gk(w,d) is a strictly increasing function of w and gk(d,d) = 0. Average distance is now 

measured by Ep{Zs Gk(wk,dk)}. To minimize this quantity subject to (2.1) holding for all s is 

equivalent to seeking the wk that minimize, for any particular s, the sum Xs Gk(wk,dk) under 

the single constraint (2.1). If X is a Lagrange multiplier, derivation gives 

(3.1) 

If a solution exists, our assumptions guarantee that it is unique. It can always be written as 

(3.2) 

for a certain function Fk(u) such that Fk(0) = l; Fk(0)=qk>0. Here, dkFk(-) is the reciprocal 

mapping of gk( -,dk). It maps Imk(dk) onto Dk(dk) in an increasing fashion. 

In most of our applications, gk(w,d) = g(w/d)/qk, where g(-) is a function of the single 

argument w/d, independent of k, continuous, strictly increasing, and such that g(l) = 0. Then 

gk(w,d) depends on k only through the multiplicative factor 1/q̂  . If F(u) = g~(u) denotes the 

inverse function of g(-), (3.2) becomes 

(3.2a) 

From (2.1), the calibration equations necessary to determine X = (Xj,... ,X:,..., Xj) are 

(3.3) 

It is convenient to define 

(3.4) 

whereby (3.3) can be written as 
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(3.5) 

The right hand side is a known quantity for every sample s. In summary form, the procedure is: 

1. Given the data from the realized sample s, and for the chosen Fk(-), solve (3.5) for X. 

Iteration may be required, as discussed in Section 10. 

2. Once X is determined, the resulting calibration estimator of ty is obtained as 

(3.6) 

Applications of the procedure are given later. The distance function Gk(wk,dk) is chosen by the 

statistician. Alternatively, he chooses the uniquely corresponding function Fk(u) = Fk(xkX). 

Examples of the form gk(w,d) = g(w/d)/qk are shown in Table 1. Since l/q^ is a recurring 

multiplicative factor, the table shows q^ Gk(wk,dk) and ^ gk(wk,dk) = g(wk/dk). 

Table 1. Examples of distance functions Gk(wk,dk), with the associated gk(wk,dk) and Fk(u). 
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Wellknown distance measures are involved: Hellinger distance in Case 3, minimum entropy 

distance in Case 4. In Cases 1, 3,4 and 5, Fk(u) is of the form (1 + a a^u)1'", with a = 1, 

-1/2, -1,-2, respectively; Case 2 is obtained when a —> 0. In Case 1, which yields the 

regression estimator (2.6), the weights wk can be positive or negative; Cases 2 to 5 guarantee 

positive weights wk. Cases 1 and 2 always lead to a solution of (3.5); in Cases 3 to 5, a 

solution is not guaranteed, but Result 1 below shows that the probability of a solution tends to one. 

In a given case, unrealistic weights wk may occur, although rarely. Negative weights wk may 

occur in Case 1; this may be unacceptable. Equally undesirable, Case 2 may yield extremely large 

positive weights wk. The cases in Table 1 allow considerable flexibility, but there is reason to 

consider further alternatives that restrict the values of Fk(u). 

Case 6. In Case 2, the values of Fk(u) = exp(qku) range in (0, «>). To restrict the range, 

specify constants L and U such that L < 1 < U , set A = (U-L)/{(1-L)(U-1)} and define 

We have Fk(-oo) = L ; Fk(°o)=U; Fk(0) =1, Fk(0) = % The resulting wk satisfy L d k < w k 

< U dk. The distance function Gk(wk,dk) in this case is, apart from a multiplicative constant, 

with x = Wj/dj.. If L is large negative, and U large positive, we are close to Case 1. If L = 0 

and U is large, we are close to Case 2. • 
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Case 7. Case 1 can be similarly restricted by specifying F ^ u ) = 1 + q^u if (L - lVqj. < u < 

(U - lVq^; Fk(u) = L if u < (L - 1)/% and Fk(u) = U if u > (U - 1)/% for any suitable 

constants L and U. The weights wk will then satisfy L dk < wk < U dk. The corresponding 

distance function is as in Case 1 if L dk < wk < U dk and defined as infinity otherwise. A choice 

L > 0 eliminates the possibility of negative weights. • 

Example 2: The ratio estimator is obtained for any gk(w,d) of the form giw/d)/^, if xk = 

xk, a positive scalar, and q^. = l/xk, as in Example 1. Then Fk(xkX) = F(qkxkX) = F(X), a 

constant. From (3.3), F(X) = tjl^, so (3.6) gives the ratio estimator tyW = ^ t y ^ / t ^ . D 

Example 2 is rather exceptional. Generally, different Fk(u) yield different estimators. 

However, Result 5 below states that all estimators (3.6), under mild conditions on the underlying 

Fk(u), are asymptotically equivalent to the regression estimator (2.6), generated by Fk(u) = 1 + 

q^u. Thus, for medium to large samples, the choice of Fk(u) has only a modest impact on such 

essential properties as the variance of the estimator. Computational convenience may then more 

than anything else dictate the choice of Fk(u). We now derive several asymptotic results that are 

needed later. The setup we use for asymptotics is essentially that of Fuller and Isaki (1981), Isaki 

and Fuller (1982). Important features of the setup are the following. We consider a sequence of 

finite populations and sampling designs indexed by n, where n is the sample size (for a fixed size 

sampling design) or the expected sample size (for a random size sampling design). The finite 

population size, N, tends to infinity with n, and we assume that 

1. lim N"1 tx exists; 

2. N-1 (tXJt - tx) > 0 in design probability; 
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3. n1'2 N"1 (tXJt - tx) converges in distribution to the multinomial N(0, 2J. 

Here, (3) is to justify the use of the normal approximation in confidence intervals based on tyW . 

Let ZZu be shorthand for X ^ X ^ =1; set A k i = 7tki - 7tk %£ . Now, (1) to (3) imply that 

converges to the fixed matrix X and that 

In particular, under simple random sampling without replacement (SRS) with sampling fraction f 

= n/N, (1) to (3) imply that 

converges to a fixed positive definite matrix, V0, and that 

We can view X as a matrix that describes an asymptotic effect of the sampling design in use. 

From a practical point of view the assumptions mean that: (1) the components of tx7l - tx are 

considered small, and that quantities of the order of II tXJt - tx II
2 are considered negligible; and 

(2) tx7l - tx follows approximately a normal distribution with covariance matrix n -i N2 X . 

Before proving asymptotic properties of tyW, we discuss the existence of a solution of (3.5). 

Now, (3.4) defines a function of X on C = Hk e U (X : xkX e Imk(dk)}, a convex domain. 

Assuming that C is an open neighbourhood of 0, independently of n, we have: 

Result 1. Equation (3.5) has a unique solution belonging to C, with probability tending to 

one as n —> °° . • 
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Result 2. Let Xs be the solution of (3.5), if one exists; otherwise, let Xs be an arbitrary fixed 

value. Then Xs tends to 0 in design probability, and Xs = Op(n -1/2). D 

In order to obtain Results 3, 4, and 5 below, we add the assumptions 

where max is over n as well as over k. 

Result 3. We have 

The proofs of Results 1, 2 and 3 are given in the Appendix. 

Result 4. The calibration estimator tyW given by (3.6) is design consistent, and 

Proof. With Fk(0) = q^, we have 

(3.7) 

where max 6k(u) = 0(u2). If (3.5) has a solution, Xs, then 

so 

where N-1{Isdkqklykl l lxkl l}=Op(l) and Xs=Op(n-i/2) by Result 2. The result follows, 

since tyjj is design consistent and tyjj - ty = Op(n -1/2). a 
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Remark. Since L,w is the nearest estimator to t^ in a given sense, it can be expected to 

inherit some of the properties of L^. By definition, u is design unbiased. We expect to find 

that t™ is asymptotically design unbiased (ADU). This property can be obtained, if attention is 

paid to one detail: it is not certain that (3.5) has a solution. With a small probability, there is none, 

and L,w is undefined. We therefore modify the estimator as follows: Use t™ if (3.5) has a 

solution; if not, use t ^ (that is, set Xs = 0). This gives an ADU estimator. Undefined estimators 

occur in simple cases, too. The usual poststratification estimator is undefined if there is one or 

more zero poststratum counts. The regression estimator (2.6) is undefined if Ts is singular. D 

Result 5. For any Fk(-) obeying our conditions, the estimator L,w given by (3.6) is 

asymptotically equivalent to the regression estimator t™» given by (2.6), in the sense that 

As a consequence, the two estimators share the same asymptotic variance. • 

Proof: From (3.6) and (3.7), 

The first two terms of the r.h.s. equal N"1 ty^, where ty™ is the regression estimator (2.6). 

The last term was found in the proof of Result 4 to be 0p(n"1). Therefore, n1/2 N"1 (tyW -1^^) = 

0p(n'1^), with a zero asymptotic variance. • 
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4. Variance and variance estimation 

Result 5 states that tyW is asymptotically equivalent to t^g, which is the special case of t,w 

generated by Fk(u) = 1 + qku. For any Fk(u) satisfying our conditions, the asymptotic variance 

(A V) of t ^ is thus the same as that of the regression estimator, namely, 

(4.1) 

where A k i = jr,k/8 - 7tk7i;̂  and Ek = y k - x k B , with B satisfying the normal equation 

(4.2) 

Clearly, B minimizes the weighted least squares expression 

(4.3) 

The residuals Ek cannot be used for variance estimation, since B is unknown. Let Bs be an 

estimator. Two alternatives are given below. Sample-based residuals can then be calculated as 

(4.4) 

The variance estimator that we advocate uses these residuals as follows: 

(4.5) 

In (4.5), calibrated weights wk are given to the residuals. The advantage that these weights have 

over the simple design weights dk is that (4.5) has attractive properties with respect to both the 

sampling design and the underlying regression model, as Särndal, Swensson and Wretman (1989) 

show. These properties are design consistency and approximate model unbiasedness. 

Now consider the calculation of Bs in (4.4). Note that SS^ given by (4.3) is the unknown 

population total of the fixed quantities q^E^. The calibrated weights estimator of this total is SSSW 
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= Zs wj-^E^ , which is minimized by Bsw satisfying the sample-based normal equations 

(4.6) 

An alternative is to take SSsd = Zs d ^ E ^ to estimate SSy. This leads to B ^ satisfying 

Either Bs = Bsw or the computationally slightly simpler Bs = Bsd may be used in (4.4) and 

(4.5). The difference in the calculated value of V(tyw) is negligible in most cases. 

/ S N « 

Example 3. Let us return to tyw = tx ty^ / t ^ in Example 2. Under SRS, (4.5) yields 

where ek = yk - Bsxk with Bs = (£,. yk)/Œs xk) = Bsw = Bsd . This is an often recommended 

variance estimator for the ratio estimator. Note that Bsw and B^ agree in this case. D 

5. Implications for poststratification. 

Poststratification is an important practice. To apply the preceding, let there be H population 

groups (the poststrata). Let xk be composed of H-l "zeroes" and a single "one", indicating the 

group to which k belongs. Then t. = Zu xk = (Nj,. . . , Nh,. . . , NH)', the vector of known 

population group counts. With X = (X2,... ,Xh,..., XH)', we get xkX = Xh whenever k is in 

group h, so xkX depends only on the group, not on the label k within the group. We assume 
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gk(w,d) = g(w/d), that is, q^ = 1 for all k. The calibration equations (3.3) give Fk(xkX) = 

F ( \ ) = g _ 1 ( \ ) = Nj/Njj, where Nh = £$h l/7tk. For any element k in group h, the weight is 

Let ysh = (2̂ Sh Yk/̂ k) /Nh . From (3.6) we obtain the usual poststratified estimator, 

(5.1) 

This estimator obtains for any function gk(w,d) of the form g(w/d). 

6. Calibration for a two-way table 

The technique of this paper can be used to calibrate on the known marginal counts for a 

frequency table in any number of dimensions. In the case of a two-way table with c columns and 

r rows, there are c + r - 1 linearly independent components in the X-vector to be determined. For 

a three-way table, the X-vector has r + c + f - 2 components to be determined, where f is the 

number of levels of the additional third factor, and so on. 

For simplicity, we limit the discussion to two-way tables. With r rows and c columns, there 

are r x c cells. The typical population cell, Uy, contains Ny- elements; i = 1,..., r; j = 1,..., c; 

so N = LZLJ Ny, where Y2,u means Z^jE-Lj. We distinguish two levels of calibration: (a) at 

the higher level, calibration is on the known cell counts N^; this is complete poststratification; (b) 

at the lower level, calibration is on known marginal counts, leading to a class of raking procedures; 

this is incomplete poststratification. In the following, we assume q^ = 1 for all k, and distance 

measures such that gk(w,d) = g(w/d). This implies Fk(u) = F(u) = gA(u). 

Case a: Calibrat-on on known population cell counts (complete poststratification). The results 
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of Section 5 apply directly, with H = r c groups. From (5.1), the calibrated weights are 

wk = dk Ny/Ny for all k in cell ij, with Ny- = Is-- l/7tk , so the calibration estimator is 

(6.1) 

where ysy = (Esy ViZ^/Ny is the ^-weighted y-mean of the sample cell ŝ  = Uy-n s. 

If all the NJ; are known, and none of the sy are empty or extremely small, (6.1) exhausts the 

available information and is the preferred estimator. But situations often arise where calibration at 

the lower level is either necessary or prefeired: 

1. The population marginal counts Ny are known, but the cell counts are not The marginal 

counts may come from different data files, for example, age group counts from one file, 

professional group counts from another, but crossclassification counts are lacking. By necessity, 

calibration is on the known marginals. 

2. There are some zero or extremely small sample cell counts. Then typ^ is undefined or may be 

unstable. Calibration on the cell counts, although perhaps feasible, is abandoned in favor of the 

more reliable calibration obtained from the known marginals. This is of particular interest when a 

table has three or more dimensions. 

3. The auxiliary information comes from an independent, large survey. Suppose this survey 

provides precise marginal count estimates, but modest precision for cell count estimates. For 

example, the annual French survey on employment uses a sample of about 130,000 individuals. 

With a sample this large, excellent precision is obtained for estimated counts in socio-professional 

categories, head-of-household age groups, and educational levels, but estimated cell counts for the 

crossclassification of any two dimensions have modest precision. The marginal count estimates are 

treated as true values, and are used for calibration, instead of the volatile cell count estimates. 

4. Stratified sampling in conjunction with poststratification. One wishes to preserve the 
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advantages of the stratification (say, geographical strata) and at the same time benefit from 

poststratification on another dimension (say, known age group counts). Then the cell counts are 

typically unknown, and part of the interest lies in estimating them. 

Now, (1) to (4) are reasons to consider the following 

Case b. Calibration on known marginals (incomplete poststratification). The considerable 

literature on the subject starts with Deming and Stephan (1940). References to this development are 

given later. We consider any function F(-) obeying the conditions in Section 3, and assume q± 

= 1 for all k. The xk-vector must be defined so that Zu xk captures (but does not go beyond) 

the information used for calibration, which is now the vector of marginal counts. This implies that 

(6.2) 

where öj.k = 1 if the element k is in row i, and 0 otherwise; 5.^ =1 if k is in column j , and 

0 otherwise. Then, Zu xk = (Ni+, — , Nr+, N+ 1,. . . , N^)' , where Ni+ = X^=1 Ny , N+j = 

Zi=1 Njj. Letting X = (ai,. . . , a^ b\,..., bc), we have x k \ = ^ + bj whenever k belongs 

to cell ij. That is, F(xkX) = F(aj + bj) depends on the cell, but not on the label within the cell. 

With Njj = LSjj l/7tk , the calibration equations (3.3) take the form 

(6.3) 

(6.4) 

This system must be solved for a j , . . . , a^ b l 5 . . . , bc, for the function F(-) chosen by the 

statistician. Iterative solution is often required; see Section 10. One equation is redundant, so we 

fix one component, say, bc = 0, and solve the system for i = 1,..., r; j = 1,..., c-1. Note that 
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^ + b: remains invariant to the elimination of one equation. Having solved for the z^ and bj, we 

calculate the cell effects F(aj + bj), the cahbrated cell count estimates 

(6.5) 

the calibrated weights 

(6.6) 

and finally the estimator obtained from (3.6), denoted t ™ ^ , is 

(6.7) 

If we compare with complete poststratification, the difference is that the known cell counts N^ in 

(6.1) are replaced in (6.7) by estimates, N^. If the information content is high in the marginals, 

the N^ are excellent estimates that improve substantially on the naive estimates N^. 

In (6.5), F(aj + b.) measures the effect of cell ij (factor one at level i, factor two at level j). 

This effect can be given a group theoretical representation. Let F ^ ) = a; ; F(bj) = p: . Then if bj 

= 0, the cell effect reduces to F(aj + bj) = F ^ ) = c^ . Similarly, if aj = 0, then F ^ + bj) = F(bj) 

= Pj. Introduce ctB: as a symbolic notation for F(aj + bj). Then 

(6.8) 

and the calibrated weight can be written as wk = dk OLB . It can be shown that if F"1 maps D 

onto R, then oc^fr defines a group on D, with unity as neutral element. Conversely, one can 

show that a group on D with 1 as neutral element can be expressed on the form (6.8). This is 
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true of Cases 1, 2, and 6 in Section 3. When F"1 maps D onto an interval I of R containing 

0, as in Cases 3, 4 and 5, then o.B- defines a "pseudo-group" in the following sense: (i) aB 

is defined on the domain F_1(a) + F_1((3) e I, and when defined, then aB = Ba, (ii) unity is 

neutral element, that is, a l = a ; (iii) a has an inverse, Ff-F'^ct)}, if-F_1(a) € I; (iv) if both 

( a B ) y and a ( B y ) are defined, then they are equal. 

A compact restatement of the weighting problem is then: If D is an interval containing l,we 

seek cell effects of the form cc^p- (with (3C = 1) where * represents a group or a pseudo-group 

on D, with 1 as neutral element (so that a 1 = a;), such that 

Cases of particular interest are: 

1. The linear case F(u) = 1 + u yields additive cell effects, a>P- = a{ + $• - 1 = 1 + a; + bj, 

which are not necessarily positive. The calibration equations (6.3) and (6.4) that result from this 

case were presented in Deming and Stephan (1940). 

2. The exponential case F(u) = exp(u) gives positive, multiplicative cell effects, cx̂ pV = oc^ 

= exp(ai+bj). The solution to (6.3) and (6.4) in this case can be obtained by carrying out until 

convergence the classical raking ratio algorithm of Deming and Stephan (1940). (Practitioners 

often stop it after two iterations.) However, as pointed out in Huang (1976), they suggested the 

algorithm apparently dunking it converges to the solution for the linear case, for which they had 

presented the equations. This was later noted by Deming (1943). 

3. Other solutions have been suggested. Smith (1947) gave a method corresponding to our Case 
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4, for which cc^pj = afi^ + fy - cc^) = (1 - aj - bj ) 4 . To each function F() in Table 1 

corresponds a cell effect representation a ^ P j . For Cases 3 and 5, they are, respectively, 

7. A parametrization in terms of additive finite population effects 

Calibration on known marginals is often almost as efficient as calibration on known population 

cell counts. That is, the variance of t^^g is often just slightly greater than that of ty^ . It is 

illustrative to go a conditional route to show this. Let us condition on the vector of cell count 

estimates, N = (N n , N12,..., Ny,..., Nrc)', where Ny- = Es- dk. We need expressions for the 

two estimators that will facilitate an analysis of their conditional bias and conditional variance. 

We associate with tyj^g a parameterization of the finite population obtained by a two-way 

additive effects ANOVA model saying that, for elements k in the population cell Uy-, yk = A; + 

Bj + Ek, where the Ai and Bj are fixed unknown finite population parameters and Ek is a 

residual. With xk defined by (6.2) and B = (Aj,..., Ap Bj,..., Bc), we have x'yB = A{ + Bj. 

Since all ^ = 1, (4.3) takes the form SSy = Zu Ek , so the normal equations (4.2) are 

(7.1) 

(7.2) 

c r 
where Ui+ = u- j U^; U+j = u i = 1 Uy . In the following A1?..., Ar, B j , . . . , Bc denote the 

unique solution of (7.1) and (7.2) obtained after fixing arbitrarily a value for one of the r + c 
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components of B; we take Bc = 0. Note that xkB = Ai + Bj is invariant to the fixing of one 

component. Here, Aj,. . . , A,., B2,..., B c l and Bc = 0 define fixed additive effects particular to 

the finite population at hand. The approximate unconditional variance of L ^ . is now given by 

(4.1) with Ek = y k - ( Aj + Bj) when k is in cell ij. (To estimate the variance, the unknown A; 

and B: must first be estimated; see Section 9.) We now derive an expression for the error t™^ 

- L, needed to establish the conditional properties: Write Ek = Ly + Rk, where Ly = yy - ( A; + Bj) 

represents lack of additive model fit (or interaction), and Rk = yk - yy, where yy = Zy- yk/Njj. 

The typical observation is then 

yk = additive model prediction + lack of additive model fit + deviation from cell mean, 

or, equivalently, 

for k € Ujj ; i = 1,. . . , r; j = 1,..., c. From (6.7) we now have 

(7.3) 

where Ny is defined by (6.5), and 

(7.4) 

We need a matching expression for ty . Multiply (6.3) by Aj and sum over i; multiply (6.4) 

by Bj and sum over j , to obtain 

These two equations, together with (7.1), yield 
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(7.5) 

From (7.3) and (7.5), the error of tymarg is then 

(7.6) 

For the complete poststratification estimator (6.1), the easily derived counterpart to (7.6) is 

(7.7) 

8. Conditional properties of tymarg, and typos 

Conditional properties for raking ratio estimators, especially for SRS, are examined, for 

example, in Oh and Scheuren (1987) and other papers by the same authors. We start from (7.6) 

and (7.7) and analyze t^^g and ty^,., conditionally on N = (Nn, . . . , Ny-,..., Nrc)', where N^ 

= Zsj. dfc. The objective is to find the conditional bias (c-bias) and the conditional variance 

(c-variance). They determine the unconditional variance through the relation expected c-variance 

plus variance of the c-bias. The index C is used to indicate conditional mean and variance 

operators, that is, Ec(-) = E(-1N) and Vc(-) = V(-1N). If ty is an estimator of ty, its c-bias is 

Bc(ty ) = Ec(ty ) - ty, and its c-variance is Vc(ty ) . Our conditional analysis is simple, since the 

Nj- = Ny F(aj + bj) in (7.6) are fixed, given N. This is because the aj and bj are solutions to 

(6.4) and (6.5), in which all quantities are fixed once the Ny have been fixed. From (7.6), 

(8.1) 

The corresponding expressions for the complete poststratification estimator follow from (7.7): 

(8.2) 
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The approximation N^ — Ny is justified in large samples, so then 

(8.3) 

The two estimators differ mainly in regard to their c-bias. Now, iypos is c-unbiased if Eç^Rs-) = 0 

for all i j , as for SRS. Under certain other designs, t ™ is approximately c-unbiased. In any 

case, the c-biai of tymsig contains ZZi ; N^ L;:, which is nonzero when there is interaction; 

compare Oh and Scheuren (1987) in the special case SRS. 

The unconditional variance is V(-) = EBC(-) + VEC(-), where E and V are with respect to the 

distribution of N. Now, V(Lymarg) will ordinarily exceed V(typos), since the c-bias of the former 

contains ZZTJ N^ Ly- . But if this interaction term is near zero, then tymiag and typ^ have 

essentially the same unconditional variance. In practice, this is often the case. 

9. Variance estimation for generalized raking 

Although raking ratio has a long history, the variance of the resulting estimators have been 

difficult to work out even approximately. For specific designs, Brackstone and Rao (1979), 

Konijn (1981), Choudhry and Lee (1987) derive formulas for the variance arising for the classical 

raking ratio algorithm (our exponential case) stopped after a few iteration steps. Bankier (1986) 

suggests an approach involving repeated linearization techniques. A fairly complex variance 

estimator is proposed by Binder and Théberge (1988). In the work of Bethlehem and Keller 

(1987), a variance estimator is implicit; although the formula is not given, it probably resembles the 

one we get for the linear case. 
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As pointed out, the variance of ty^g is given by (4.1), which applies with Ek = yk - ( Aj + Bj) 

for any design and any function F(-). The Aj and Bj verify the normal equations (7.2) and 

(7.3). The variance estimator is obtained from (4.5), replacing first the unknown Aj and Bj by 

estimates. These are derived from the sample-based normal equations (4.6). They take the form 

These resemble the calibration equations (6.3) and (6.4), so the same computer routine can be 

used to solve for Aj, Bj (after fixing Bc = 0). The resulting sample-based residuals are 

(9.1) 

With these ek, the variance estimator V(tymarg) is easily calculated from (4.5). We can also write 

In the case of SRS, the expressions are easy to interpret. To condition on N is then equivalent 

to conditioning on the sample cell counts, n = (nn , n12,..., ny,..., n^.)', since Ny- = f-1^ 

under SRS with f = n/N. The weights are wk = N^/ny- for all k in sy. From (4.5) and (9.1), 

where 

with Sfjj =Ssjj (yk-ysij)2/n;j. Here, V2 estimates the c-variance in (8.1), namely, 
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with S- = Eujj (yk - yij)
2/(Nij-l). The component Vj estimates the variance of the c-bias in 

(8.1), that is, VBcCtyj^g) = V(LLjj N^ Ly), where V is with respect to the distribution of n. 

10. Computational aspects 

To use the calibration estimator (3.6) we must first solve (3.5) for X. Solution by Newton's 

method is first discussed; then techniques for calibration on known marginals are examined. 

1. Solution of (3.5). Let <|>s (X) = 3 <))s(X)/3X. Start with X0 = 0. Subsequent iterative 

values, Xv, v = 1, 2,... are obtained by 

(10.1) 

(Note: For cases where F_1 maps D onto an interval I of R, one must check that xkXv+1 really 

belongs to I. For instance, if xkXv+1 £ sup I, it is a good idea to replace Xv+1 by X^+1 = Xv + 

6V(XV+1 -Xv) for some 9V < 1 such that X ,̂+1 is near the border of the set of permissible values.) 

From (3.4), <J)S(0) = 0 ; <}>s (0) = Ts . The first iteration gives \ 1 =TS
1 (tx- tXJl); subsequent 

iterations, v = 2, 3,.. . obey (10.1) until convergence. Now, Xj is the vector (2.4) that yields 

the regression estimator (2.6). Thus (2.6) is a first approximation to (3.6); Result 5 shows 

them to be asymptotically equivalent. If F(u) = 1 + u, the iteration stops after the first step. 

2. Solution of (6.3) and (6.4). We apply (10.1) to calibration on two known marginals. The 
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equations to solve are (6.3) and (6.4), and X = (alt ...,a,., bl5 ...,bc). Fix bc = 0 throughout the 

iteration. This eliminates the last row and the last column of (j)s (X). A square r+c-1 matrix 

remains. Its elements, my, are as follows, with F'(u) = dF(u)/du: m^ = Xi=1 Ny F'(aj+bj); 

mr+j,«-j = £j=i Ny F'Cai+bj); mi>r+j = m ^ = Ny F'^+bj); i = 1,..., r; j = 1,..., c - 1; all 

other off-diagonal elements are zero. Start with XQ = 0. The elements % , bj of the next value, 

\ \ , are obtained by solving 

These are final equations if F(u) = 1 + u; for other F(u), iteration continues until convergence. 

3. Alternative solution of (6.3) and (6.4). The system may be solved by noting that each 

equation (6.3) can be solved for â  assuming the bj are known, and conversely for (6.4). With 

b c fixed at 0 throughout, follow the algorithm: 

l.Set bj = 0; j = L... ,c - l ; 

2. Obtain a set of aj by solving one by one the r equations (6.3), with b, from the preceding step; 

3. Obtain a set of bj by solving one by one the c-1 equations (6.4), with aj from the preceding step; 

4. Repeat steps 2 and 3 until convergence. 

The procedure requires no matrix inversion and can be shown to converge to the proper 

solution, but slowly compared with Newton's method. Approximately 15 to 20 iterations may be 

required in cases for which 3 to 5 would typically suffice for Newton's method, with time of 

execution typically increased by a factor of 3 to 4. 

In the linear case, F(aj + bj) = 1 + a; + bj, and (6.3) gives 
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Equations of this form are wellknown from unbalanced two-way ANOVA. In the exponential case, 

F(ai+bj) = exp(ai+bj), and we get the raking ratio algorithm of Deming and Stephan (1940). 

11. Concluding comments 

Result 5 states that the calibration estimators obtained by different specifications of F(-) all 

have the same asymptotic variance. If asymptotic variance is the criterion, the theory in this paper 

does not designate one estimator as superior to the others. Confirming theory, we found in 

simulations with modest to fairly large samples that from the standpoint of variance alone, there is 

little to choose between the estimators t^^g corresponding to different F(-). Individual cells 

weights Ny may change considerably from one specification F(-) to another, but there is little 

effect on VCt^^g), which combines all cells. Readily observed features of the weights, such as 

their range, may become the overriding factor in the choice of F(-). The weights must make good 

sense to the user. For example, if certain cells are also domains of study, the negative weights that 

can occur in the linear case F(u) = 1 + u is not an appealing prospect Equally undesirable are the 

excessively large cell weights that can result in the exponential case F(u) = exp (u) corresponding 

to classical raking ratio. Therefore, functions F(-) that give weights bounded from above and 

below are attractive alternatives. Cases 6 and 7 are of this kind They allow the practitioner to try 

several specifications of (L, U) and settle on one that gives suitable weights. On the other hand, 

there is a slight chance that Cases 6 and 7 yield no solution. An extension of our calibration 

weighting is to also include the reweighting for estimation done in the presence of nonresponse. 

The classical raking ratio seems promising in this regard; see Binder and Théberge (1987). 
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APPENDIX 

Proofs of Results 1.2 and 3. 

1. Mathematical preliminaries 

1.1. The function (I) and its properties 

Let Q = n {X : xkX e Imk(dk)}, where n is over k € Un, the finite population associated 

with the (expected) sample size n. The interior C° of C„ is an open convex set containing 0 for 

every n. Moreover, C = rÇ=1 C° is convex; we assume that it is also open. Let En and Pn 

denote expectation and probability, respectively, with respect to the sampling design indexed by 

n. For X e C , N"1 En{<^s (X)} is a well defined continuously differentiable function. By our 

assumptions, it converges to a fixed function denoted (j>. Convergence is uniform on every 

compact set in C . Note the properties 

Now, for every X, (j> is a positive definite matrix because all Fk are increasing functions. As 

a consequence, <)) is injective and maps C onto an open neighbourhood of 0 in RJ. Let B 

be a closed sphere with radius r contained in that neighbourhood, and let A be the compact set 

<t>_1(B). The inverse function 0"1 is defined on B, continuous, and continuously differentiable. 

Then II §A(x) II is continuously differentiable and bounded on B. Let K = maxx6B II ( (Jr '̂cx) II. 
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1.2. Properties of N-1 

All functions N-1 <j)s(X) are defined on C and therefore on A. For a continuous \y defined 

on C let II\J/IIM= sup^ M II \|/(X) II for M compact in C . By our general properties of 

convergence we have for every e > 0 that Pn (II x\_1 <j)s - <{> llA < e) —» 1 when n increases. 

Now let 4>. = N"1 <})s for some function verifying II (^ - 4> HA ^ P r ; II (^ - 4> 'ilA < P K, with 0 < 

P < 1/2. The probability of this event tends to 1 as n increases. Let rx = (1 - P) r, let Bx be the 

sphere llxll <rj in IRJ. Now, §1 maps the frontier of A onto the crown rj < llxll < r ( l + 

P) and ((^(A) is a bordered manifold homotopic to B. These notions are discussed in 

Trenoguine (1987). A consequence is that ((̂ (A) covers the sphere Bl5 and, in other words, that 

for every x e Bj, the equation <{>1(X) = x has a (unique) solution. Moreover, (J)^1, defined 

on Bl5 is a continuously differentiable function. Since II (f>j - (j)'ll < p K for every X in C, 

( (JY1)'^) exists for every x e Blt and II (fy^x) II < Il x II K (1 - p)"1. 

2. Proofs of the three results 

Result 1. First, N_I(tXJl - tx) =z belongs to Bj with a probability tending to 1. Secondly, 

N"1 <{>s has an inverse function on B1 with probability tending to 1. As (3.5) can be written 
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the equation thus has a unique solution with probability tending to one. D 

Result 2. Let Xs = (N"1 (J) )-(z) if z belongs to Bj; otherwise, Xs is arbitrarily defined. 

Since <|>s (0) = 0, we have 

and II Xs II < II z II K (1 - (3)-1. This inequality holds with probability tending to one when n 

increases. But z = 0p(n'1^), so there exists a constant K' such that Pn (Il z II < K' n-1/2) —> 1. 

Combining the two inequalities, Pn ( II Xs II < K K' (1 - P)1 n_1/2) —» 1, which implies, by 

definition, that Xs = OpCn-1/2). D 

Result 3. Let 6k(u) = Fk(u) - 1 - q ^ . We assume that 6k(u) = 0(u2) holds uniformly, which 

is equivalent to our assumption that Fk(0) is uniformly bounded. Thus, 0(u) = max 0k(u) = 

0(u 2 ) . Otherwise, for any e > 0, there exists K"such that, for all k, ki I < e will imply that 

6k(u) < K"u2 . We can write (3.5) as tXJI - tx — Xs dkxk {q^i^s + 0k(xkXs)}, and therefore 

For Xs sufficiently small, 
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Here, and, by Result 2, 

Result 3 follows. D 
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