

R & D Report 1990:12. Conceptual modelling and related methods and tools for computer-aided
design of information systems / Bo Sundgren.
Digitaliserad av Statistiska centralbyrån (SCB) 2016.

urn:nbn:se:scb-1990-X101OP9012

INLEDNING

TILL

R & D report : research, methods, development / Statistics Sweden. – Stockholm :

Statistiska centralbyrån, 1988-2004. – Nr. 1988:1-2004:2.

Häri ingår Abstracts : sammanfattningar av metodrapporter från SCB med egen

numrering.

Föregångare:

Metodinformation : preliminär rapport från Statistiska centralbyrån. – Stockholm :

Statistiska centralbyrån. – 1984-1986. – Nr 1984:1-1986:8.

U/ADB / Statistics Sweden. – Stockholm : Statistiska centralbyrån, 1986-1987. – Nr E24-

E26

R & D report : research, methods, development, U/STM / Statistics Sweden. – Stockholm :

Statistiska centralbyrån, 1987. – Nr 29-41.

Efterföljare:

Research and development : methodology reports from Statistics Sweden. – Stockholm :

Statistiska centralbyrån. – 2006-. – Nr 2006:1-.

Conceptual Modelling and Related Methods
and Tools for Computer-Aided Design

of Information Systems

Bo Sundgren

R&D Report
Statistics Sweden

Research - Methods - Development
1990:12

Från trycket Oktober 1990
Producent Statistiska centralbyrån, utvecklingsavdelningen
Ansvarig utgivare Åke Lönnqvist
Förfrågningar Bo Sundgren, tel. 08-783 41 48

c 1990, Statistiska centralbyrån
ISSN 0283-8680
Printed in Sweden

1990-06-06

CONCEPTUAL MODELLING
AND RELATED METHODS AND TOOLS

FOR COMPUTER-AIDED DESIGN OF INFORMATION SYSTEMS

Bo Sundgren
Statistics Sweden1 and

Stockholm School of Economics2

Paper for the Second International Conference on Informa­
tion Systems Developers Workbench, Gdansk, Poland,
September 25 - 28, 1990.

Abstract. Conceptual modelling is a good starting-point for
design and construction of information systems as well as for
computer-based tools supporting such work. The paper
discusses how conceptual modelling can be used and
extended to become a comprehensive and complete metho­
dology for specification of external, user-relevant properties
of an information system and for determination of internal
system properties satisfying the specified external require­
ments. The paper claims that methodologies and computeri­
zed tools for information systems development are not only
mutually dependent upon each other but must also be
tailored to the particular needs and conceptual frameworks
of the organizations and applications where they appear.
This thesis is illustrated by the author's experience from
statistical applications and organizations. As a consequence
CASE tool should be open, concept-driven "shells" or "tool­
kits" rather than closed generalized software products.

1 Information systems design methodologies and computer-
based design tools

A starting-point for this paper is that any development of computer-based
design tools (like so-called CASE tools, and components of such tools)
must be firmly based on information systems theory and information
systems design methodology.

1) Statistics Sweden, S-115 81 STOCKHOLM, Sweden
2) Stockholm School of Economics, Box 6501,

S-113 83 STOCKHOLM, Sweden

1

Information systems are often large and complex systems. General systems
theory and information systems theory (ef Langefors [1]) implies certain
principles for the design of such systems. One principle is that complex
systems are imperceptible as a whole, and must be broken down into
simpler subsystems. Another principle is that the internal properties of a
system to be designed should be derived from a specification of the
desirable external properties of the system.

Thus information systems theory implies that an information system design
methodology must be based on

(1) an information systems architecture that partitions any
imperceptible information system into perceptible subsystems
(parts, functions);

(2) a specfication methodology for stating the external properties
of (a subsystem of) an information system in such a way that
the internal properties of the (sub)system can be derived in
a systematical way from the external properties.

In this paper I will discuss an information systems architecture that is
based on a general definition of an information system, and a specification
methodology that is linked to this architecture and is inspired by the
methodology of conceptual modelling.

2 A general architecture of information systems

According to information systems theory [1] an information system is a
system for

collection,
storage,
processing, and
presentation (retrieval, distribution)

of information.

An information system is an abstract entity. The concrete realization of an
information system is a data processing system. Thus a data processing
system is a system for

collection,
storage,
processing, and
presentation (retrieval, distribution)

of data.

With a slightly modified terminology, which is more adapted to data base
orientation (and thus to conceptual modelling, which has its roots in data
base theory) we may say that an information system (and a data processing

2

System) consists of four major subsystems, the subsystems for

input oriented processes,
output oriented processes,
transformation processes, and
information base (database) processes.

Note. We shall follow the practice of everyday language and let the term
"database" denote also what we have called above "information base".

The functions of the four subsystems may be described in the following
way:

(1) the database contains information (represented by data)
about the status and development in a selected subsystem of
the real world, the object system;

(2) the input-oriented subsystem makes sure that the database
properly reflects the status and development in the object
system;

(3) the output-oriented subsystem makes the contents of the
database available to the users of the information system;

(4) the transformation subsystem transforms information in the
database in accordance with requests from the other sub­
systems.

The concepts involved in the above-mentioned definition of an information
system may be structured and visualized in the following way:

This conceptualization of information systems and data processing systems
may be described as database oriented, since the database subsystem is
central in several respects:

3

• the database reflects the object system;

• all operations in all subsystems take all non-
initial inputs from the database, and deliver all
non-terminal outputs to the database;

• the database is also the central holding of meta-
information (represented by metadata) in the
information system; this "database within the
database" is called the metadatabase.

3 Formal specifications of information systems

3.1 The needs for formal specifications and metainformation

In the previous section we defined a general structure for information sys­
tems. When we design, operate, and maintain a particular information
system, there are several needs that motivate the development and main­
tenance of a formal specification of that particular information system, the
application system, and its parts. In addition to serving as a basis for
computer-aided design, the formal specification should also facilitate

• efficient communication between different
categories of people, who are involved in the
design, construction, operation, maintenance, and
use of the information system;

• reliable documentation of the information sys­
tem;

• efficient communication between the users and
the information system during the operation of
the information system.

Thus the formal specification should serve as a common frame of reference
for different categories of people and as an interface between the users
and the information system. Furthermore, the formal specification should
also serve important internal needs for metadata of the information system
itself. For example, most software components of the system will need
formal descriptions of the files and records in the database, as well as
descriptions of the mappings between the internal data representations and
the external views of the data, as seen by the users.

4

3.2 Conceptual modelling and concept-driven tools and systems

There are different methodologies for formally specifying information
systems. Especially in connection with directive information systems [12],
such as statistical information systems, it seems suitable to start from a
conceptual model of the object system, to be reflected by the database part
of the information system. This approach is called 'conceptual modelling'.
CASE tools and other computer-based systems for supporting the process
of designing and constructing information systems (and their data
processing representations), which are consistently based upon conceptual
modelling as the method for specifying the (external) requirements, may
be called concept-driven tools and systems.

A conceptual model can be used to fullfil many of the tasks defined above
for a formal specification of an information system. It can serve as the
basis for communication between users and designers of information
systems. It can also serve as an interface between the contents-oriented
and the technically oriented parts of an information system design and
construction process. And it can be the model in terms of which the user
communicates with the computerized information system.

What then is a conceptual model? The term emanates from database
theory. For example, in the ANSI/SPARC [10] three-level schema
architecure for databases, the conceptual schema has the function of being
a relatively invariant specification of (the contents of) the database, exist­
ing as an intermediary level in the mappings between the external
schemas, reflecting dynamically changing user needs, and the internal
schema, reflecting the technology-dependent, dynamically optimized hard­
ware/software implementation of the database. One way of attaining the
desirable invariance in the conceptual schema is to base it on a model of
the real world, rather than on a specification of the ever changing informa­
tion needs and/or data representations.

Other terms that have approximately the same meaning as 'conceptual
model' are 'infological model' and 'semantical data model'. The term 'data
model' is sometimes used as a synonym to 'conceptual model', but a data
model is often assumed to be an abstraction of the physically existing
database, more than a model of the real world represented by the
database.

Details about one particular approach to conceptual modelling, the Object-
Property-Relationship (OPR) approach, can be found in appendix 1, as
well as in [2], [12], [13], and [21].

3.3 Modelling the components of an information system

A complete conceptual model of an information system (data processing
system) should contain subsets (views) covering the four major components
of the system:

5

- the input oriented view,
- the output oriented view,
- the transformation view, and
- the database view.

One may argue that one or other of these views is redundant, that is,
logically superfluous, since it may be derived from the others. For example,
it must be possible, in principle, to derive the transformation view from the
input oriented view and the output oriented view. However, it is often
practical, and even theoretically advantageous, to treat all four views of the
complete conceptual model explicitly. Thus, for example, one argument for
modelling the transformation view explicitly is that sometimes the easiest
and clearest way to define an information output is to describe how it is
derived by successive transformations from information inputs.

If one of the four views of the complete conceptual model should be
regarded as more basic than the others, it must be the database view.
Actually this is something that distinguishes conceptual modelling from
other approaches to specifying the external requirements on an in­
formation system. As was stated earlier in this paper, a conceptual model
is basically a model of the real world that is reflected in the information
system.

We shall sometimes call the database view the base version of a con­
ceptual model.

3.4 Conceptual algebras

The idea of "conceptual algebras" is an interesting possibility for facilitating
consise and precise specifications of conceptual models, views of con­
ceptual models, and - not least - the relationships between the views, and
between the views and the complete conceptual model.

A conceptual algebra, like any other algebra, consists of two major
components: a set of entities, and a set of operators operating on the
entities, thus producing other entities within the same set of entities. In
mathematics the entities are typically numbers, and the operators are, for
example, "addition", "subtraction", "multiplication", and "division".

Algebras have been used in database theory to formalize database
languages, especially so-called query languages. The relational algebra is
an example of this, where the entities are relational tables, and the
operators are "selection", "projection", "join", etc.

In a conceptual algebra the entities should, of course, be conceptual
entities, and the operators should be conceptual operators "producing" (or
defining) new conceptual entities from those which have already been
specified. Thus, in a conceptual algebra associated with a conceptual
model belonging to the OPR "family" the entities would belong to three
categories: objects, properties, and relations.

6

An example of a conceptual algebra, based on the OPR approach to
conceptual modelling, is given in appendix 2 and in [20]. The reader is
recommended to (at least) "skim through" appendix 2 at this point.

4 Some propositions concerning concept-driven CASE tools

I suppose that many CASE tools that are available on the software market
today could be claimed to be concept-driven in the sense that they cover
some variation of conceptual modelling (and very often a variation belong­
ing to the OPR "family"). However, I have sometimes the feeling that
conceptual modelling (and other popular design techniques) are covered
primarily for the simple reason that they are popular and "common
practise" among system developers. As a contrast I would like to put
forward the following normative proposition for consideration:

Proposition 1. CASE tools should be based on conceptual modelling,
because it is the right starting point for any information system design
process. Every design decision suggested by a CASE tool should be
derivable from some part of a conceptual specification.

Of course this proposition is a very strong assertion, and I do not expect
it to be accepted without argument, but I think it is worth consideration.
There are at least three types of counterarguments:

(1) There are other methodologies (cf [19], for example) than conceptual
modelling that are (also) indispensible for a proper specification of the
user-relevant, external properties of an information system.

(2) The design decisions suggested by a CASE tool on the basis of a
conceptual model may sometimes be clearly inadequate, or non-optimal,
and have to be revised or modified on the basis of the (good) judgment of
the human designer.

(3) Existing CASE tools sometimes support design methodologies, which
are not based on any type of system specification, or are based on a
specification of internal system properties rather than on user-relevant,
external properties. (Example: A tool that proposes an "optimal" file
organization on the basis of variables like "record length" and "transaction
frequencies".)

Counterarguments of type (2) are real counterarguments only if the
information, which the human designer uses in order to improve the
decision suggested by the CASE tool, could not be regarded as a (non-
formalized) part of a more complete conceptual model.

Counterarguments of type (3) can probably in most cases be interpreted
as criticisms of existing tools and practises, which are often "partial". A real
counterargument is at hand only if one could not imagine an improvement
of the tool that replaces non-existing or internally oriented system
specifications by explicit, externally oriented ones.

7

Counterarguments of type (1) can probably in most cases be reduced to a
semantical problem: how much are we prepared to stretch the concept of
"conceptual modelling". No doubt, there are important aspects of concep­
tual modelling (like dynamics) that are at present underdeveloped, but I
can see no fundamental reasons, why we should not in the future "fill in
the gaps" and extend the concept of a conceptual model to become a more
or less complete specification of all user-relevant, external properties of an
information system. Of course, some people may prefer to put other labels
(than "conceptual model") on parts of the specification, but this does
conflict with the basic idea.

Thus I believe that potential counterarguments to proposition 1 should
more likely lead to revisions and extensions of the methodology of
conceptual modelling than to a relaxation of the proposition. This leads us
to the next proposition:

Proposition 2. CASE tools and information system design methodologies
are intimately related to each other, and the development of one must go
hand in hand with the development of the other.

This proposition, too, may seem to be rather controversial, since it appears
to pull away the ground for the development of generalized CASE tools,
at least before we have been able to standardize on one common systems
development methodology (which I do not think will ever happen, for
reasons that I will explain below).

Actually some CASE tool developers (see [18], for example) have rather
long ago realized this potential problem, and have invented the term
"CASE shell" (in analogy with "expert system shell"). A CASE shell is a
platform of tools, or a tool-kit, on the basis of which a user may tailor his
own CASE tool as an application (which in turn is instrumental in the
development of the "real" applications of a particular organization).

Additional arguments for open CASE shells rather than closed, monolitic
CASE tools are suggested by the next proposition:

Proposition 3. Information system development methodologies have to be
application and organization dependent.

It is an empirical fact (at least in Sweden) that every organization tends to
develop its own system development methodology, often on the basis of
one or more "general" methodologies. This can be interpreted either as an
undesirable lack of standardization, or as a desirable adaptation to the
specific need of an organization and its specific type(s) of applications (or
possibly as a bit of both).

For essentially the same reasons that we nowadays decentralize EDP
departments and promote integration of EDP with other production
factors in the organization's pursuing of its overall goals, I think that many
organizations have to tailor an integrated methodology for the con­
ceptualization, control and development of all its functions and activities.
This integrated methodology should cover information systems develop-

8

ment, maintenance, and operation as an integral part, not as an isolated
doctrine for EDP specialists.

From Proposition 2 and Proposition 3 follows:

Proposition 4. CASE tools have to be application and organization
dependent.

It is tempting to conclude with

Proposition 5. A CASE tool should be an integrated part of an orchestra
of knowledge-based tools (expert systems) for the conceptualization,
control, and development of the activities of an organization.

5 Statistical information systems

Statistical offices and statistical information system can be seen as one type
of organization and one type of application for which the propositions
stated in the previous section could be tested. In a way that is what I have
been doing during the last two decades, and in this section I will summa­
rize some of the results of this work.

5.1 Some historical background

Conceptual modelling as an analytical tool was introduced at Statistics
Sweden at the end of the 1960's, and several projects - methodological as
well as software oriented - were carried out in the office during the 1970's.
Of course, in the beginning of this work the term "conceptual modelling"
had not yet been coined. Instead we called it "infological modelling". The
basic theoretical platform was summarized and presented in my doctoral
thesis [2]. Many ideas were based on the seminal work of Langefors [1].

One important reason for this early interest in conceptual modelling was
the importance of conceptual definitions in the daily work of a statistical
office. The task of a statistical office is to supply decision-makers at
various levels and positions in society, as well as the public at large, with
a reasonably rich and objective picture of the social, economical, and
physical conditions in a country, in order to facilitate the democratical
process resulting in political decisions, as well as planning and control
activities undertaken by companies and public institutions. The conceptual
definitions that are underlying the collection, processing, and presentation
and analysis of public statistics have a significant impact on everybody's
perception and understanding of the "real world" around us. Sometimes an
uncertainty about the definition of a key concept, like "unemployment" can
cause heated debates. The seemingly neutral and colourless figures of a
statistical table often lend themselves to different interpretations, some of
which are "reasonable" or at least "possible", whereas others may be due
to ignorance or (accidental or deliberate) misunderstandings of the
conceptual definitions involved.

9

Some of the projects that were based on (and promoted) the development
of infological/conceptual modelling were:

the establishment of a conceptual framework of socio-demo-
graphical statistics (SSDS) corresponding to the system of
national accounts (SNA) in economic statistics;

the establishment of a metadata repository, or metadatabase,
"the Variable Catalogue", containing definitions and descrip­
tions of the surveys, objects, and variables of the statistical
office;

the development of an "archive-statistical system" (ARKSY),
consisting of databases, metadata, and software (ARKDABA)
for rapid and flexible production, on demand, of "new" (com­
binations of) statistics, based on existing data sources;

the development of a system of "statistical databases" (SDB),
consisting of databases, metadata, and software for rapid and
flexible retrieval, (re)production and analysis of aggregated
statistics;

the development of a high-level (4GL) software family (the
TAB68 family) for supporting typical processes in statistics
production like tabulation and editing;

the development of a methodology (the SCB model [22, 24])
for the (infological and datalogical) design and construction
of statistical information and data processing systems; key
elements and ideas:

• "infological design" before "datalogical design";

• "the object graph";

• "flat files";

• high-level software components like the in-house
developed TAB68 family or commercial products
like SAS;

the development of a CASE tool (the CONDUCTOR [25])
supporting (parts of) the SCB model for systems develop­
ment; key components:

• the DOK system for documentation;

• automatical generation of control statements (in
IBMs Job Control Language);

• automatical generation of applications in some of
the software products recommended by the SCB

10

model for systems development;

• automatical transformation of metadata between
some of the recommended software products;

the development a software system (the Base Operator
System, BOS) supporting high-level development of statistical
applications on the basis of an algebra for data manipulation
adapted to the needs of statistics production (the Base
Operator Algebra); this work was carried out jointly with a
number of other statistical offices within the framework of the
UN/ECE Statistical Computing Project [15].

Some of the projects listed above were more or less successful, others were
failures. However, they have all contributed significantly to our under­
standing of statistical information systems and the proper design and
construction of such systems. The most recent project, which could be
added to the list above, is a project that aims at integrating statistical
design and information systems design. A first step in this work is to
harmonize the concepts used by statistical methodologists and the concepts
used by EDP specialists, and to include statistical concepts and methodo­
logy as an integrated part of the above-mentioned SCB model for systems
development. This work is obviously in line with the propositions stated in
section 6 of this paper.

5.2 Some characteristics of statistical information systems

A statistical information system may be defined as an information system
where the output oriented processes deal with information (macro-
information) about groups of objects that is the result of transformation
processes that aggregate information (micro-information) about individual
objects that is dealt with in the input oriented processes. Typical aggrega­
tion operators that control the aggregation processes are frequency
counting, summation, averaging, correlation computation, and even
sometimes more sophisticated estimations of statistical measures (charac­
teristics, parameters).

A quite different approach to the definition of a statistical information
system is to focus on the purpose of the information system. A typical
purpose of a statistical information system is to support high-level (stra­
tegic, directive) decision-making. This distinguishes statistical information
systems from, for example, administrative information systems, the purpose
of which is typically to support more routine (operative) decision-making.
Moreover, in an administrative information system both the input and the
output processes typically deal with information about (the same) indi­
vidual objects (micro-information).

In passing, it should be pointed out that the classification of information
into micro- and macro-information is a relative (rather than an absolute)
classification. The macro-information output from one aggregation process
may sometimes be fed into another aggregation as input micro-informa­
tion, and this type of iteration may occur an arbitrary number of times.

11

5.3 The design of a statistical information system

The design of a statistical information system often starts from (at least)
three different directions more or less in parallel:

(1) From the output side: which tables are to be produced?
(Specification of tabulation plan.)

(2) From the input side: which questions are to be put to the
respondents (specification of survey questionnaire), and which
information can we obtain from other sources (specification
of the information contents of available and relevant registers
etc).

(3) From the problem side: which are the problems that are to be
tackled with information from (among other sources) the
particular statistical survey or statistical information system
under design? (Problem specification.)

Theoretically it is easy to say that (3) should precede (1), which should in
turn precede (2), but practically this may be an unrealistical idealization,
particularly if we take cost/benefit aspects into serious consideration. For
example, a particular potential information output may on the one hand
be more or less useful in illuminating a certain problem, and on the other
hand more or less costly to produce, depending on, among other things,
whether it can be produced from information inputs that can be found in
available registers, or whether it has to be produced on the basis of a
survey questionnaire.

Of the three design directions mentioned above, (1) is of course closely
associated with the input oriented view of the conceptual model, and (2)
is associated with the input oriented view. (3) would be facilitated by a
stringent "reality model", that is, it would be related to the "database view",
or maybe even better with the complete conceptual model, containing and
integrating the different views.

6 Modelling the four major subsystems of a statistical informa­
tion system

We shall now discuss how conceptual modelling can be used for deriving
the design of a statistical information system and its four major subsystems,
and how we can do this both on a contents-oriented, infological level, and
on a hardware/software-oriented, datalogical level.

6.1 Modelling the statistical database

On the infological level the specification of the database is identical with
the conceptual model. If we assume that the database should be imple­
mented under a relational database management system, or as a set of flat
files managed by some suitable data manipulation language, like the Base
Operator System [15] or SAS, the transformation of the infological model

12

into a datalogical model becomes fairly straightforward, too. Basically
objects, many-to-many relations, and multi-valued variables become
relational tables (flat files), and many-to-one relations become foreign key
columns in the relational table corresponding to the object in the "many-
end" of the relationship. This transformation into a default specification
can easily be automated, but it may sometimes need to be optimized or
"tuned" for efficiency reasons. For example, the designer may consider
splitting up a big relational table (by columns or by rows) into several
smaller ones on the basis of an analysis of the expected transaction traffic
against the database. Conversely the designer may contemplate the conso­
lidation of several relational tables into one, in order to reduce the
number of table accesses in order to respond to certain transaction types,
even though this may lead to (datalogical) redundance, and thus a lower
degree of normalization in the sense of the relational theory. Another
important design decision on the datalogical level concerns the specifica­
tion of indexes and other auxiliary structures that aim at speeding up the
processing of the expected database traffic.

The conceptual model may contain (infological) redundance. For example,
a certain variable may be derivable from other variables. A common
situation in statistical databases is that variables of an object on a higher
level of aggregation (macro-level) are derivable (by aggregation) from
variables on a lower level of aggregation (micro-level). In such a situation
the designer may choose to store only the microdata or both the microdata
and the macrodata. Ideally a user of the database should never need to
know which of the alternatives that the designer has chosen. Actually the
user should have the freedom to think of the data in the database either
as microdata or as macrodata, and to formulate queries accordingly,
regardless of how the data are actually stored. Furthermore it is sometimes
desirable that the user can think of the database in terms of (imaginary)
microdata even when only macrodata are physically stored. Generally
speaking, whenever there is redundance in the conceptual model, the
designer has the option either to store all corresponding data, implying
(datalogical) redundance, which can be used for speeding up retrieval
operations, and possibly for consistency checks, or to store some correspon­
ding data and derive others by software procedures corresponding to the
definitions of redundant concepts.

Many datalogical design decisions are dependent on a good specification
of the expected transaction traffic between the database and its environ­
ment. This specification should be derivable from the conceptual model.
In principle the object system dynamics implies the input-oriented traffic,
and the information needs implies the output-oriented traffic, but when
estimating the total transaction traffic that will hit the database, one must
also take into account additional transactions generated inside the
information system itself, for example in the data editing function of the
input-oriented subsystem.

6.2 Modelling the input-oriented subsystem

There are two fundamentally different types of inflows of information (and
data) to statistical information systems. On the one hand we have the

13

traditional type of inflow, where the input arrives in natural batches
corresponding to the executions of censuses and surveys. Such inflows are
initiated and controlled by the statistical agency responsible for the
censuses and surveys. The information is essentially statical, since it typi­
cally informs about states of the surveyed object instances in the object
system. A limited amount of dynamical information can be derived by
comparing successive states, either on the micro-level (as in so-called
longitudinal studies), or (more often) on the macro-level by comparing
aggregated figures (example: the price development in terms of the
consumer price index).

The other type of inflow to statistical information systems is event-based.
Every time an event of a certain type (for example a crime, a traffic
accident, or some type of decision) occurs in the object system, a report
transaction is generated and transmitted (very often through an admini­
strative system) to the statistical information system, where the database
can, at least in principle, be updated in much the same way as in an
administrative information system. However, the "real time requirements"
are typically not so high in a statistical system; some delay and "batch
formation" may be quite acceptable.

For input-oriented subsystems with inflows of (only) the first type (natural
batches), the updating is in a sense trivial and can be derived from a state-
oriented conceptual model alone. The updating part of input-oriented
subsystems with inflows of the second type (event-reports) can be derived
in much the same way as in administrative information systems, that is, by
analyzing the dynamical aspects of the conceptual model, represented by
the consequence matrix and/or life history diagrams.

A typical feature of statistical information systems is that the set of
observed object instances is sometimes only a subset, a sample, of the
whole population of instances of a certain object type in the object system.
In such sample surveys the design of suitable sampling and estimation
procedures is an essential part of the statistical design and requires
competent statistical expertise. The sampling process can be regarded as
a part of the input-oriented subsystem; it is often based upon a ran­
domized and stratified selection of objects from a frame, that is, a register
that represents (or is in a known way related to) the population of interest.
Information about the sampling procedure is a type of metadata that is an
equally important input to a statistical information system (of sample
survey type) as the object data themselves.

The input view of the conceptual model should specify the data structures
as they are conceptualized during data entry, coding, and editing. If the
data is collected by means of questionnaires and forms, via paper and
pencil, or directly through a computer terminal, the data structures are
often hierarchical, corresponding to hierarchically related objects in the
object system. The routing structure between the questions in a ques­
tionnaire can typically be described in the same way as a structured
program [17], and thus modelling techniques known from the area of
structured programming, like JSP diagrams could turn out to be useful.
Different routings depending on the answer to a particular question

14

typically correspond to different subtypes in the conceptual model (cf
appendix 1).

An interesting methodological work on deriving the questionnaire design
from conceptual modelling can be found in Balestrino et al [26].

Coding can be regarded as a transformation from one domain of values to
another domain for the same variable.

Theoretically the specification of editing rules becomes trivial if one has
a complete conceptual model. In fact one editing rule is enough: the data
should conform to the specified conceptual model. Thus checks for the
validity and consistency of the input data should as far as possible be
automatically derived from the conceptual model, including both its statical
and its dynamical parts, rather than "invented" separately; see for example
Graves [11]. In practice of course the editing problem is not quite so
simple. Even if conceptual modelling is done conscientiously, it will not
always be so complete that all desirable editing rules are automatically
implied by the conceptual model. In particular, so-called macro-editing
rules may still have to be added separately. Too many and too complex
editing rules may also be generated, and the conceptual model in itself will
not automatically prescribe what to do with data that do not conform with
the conceptual model, for example whether it is the incoming data or some
data already existing in the database that should be regarded as "wrong".

On the datalogical level it may be a fairly complex task to handle the
mapping between a hierarchical, input-oriented view and the base version
of the conceptual model, especially if editing should be done interactively
with immediate rechecking of manually updated data. However, there are
already some commercial software products like SAS and PARADOX that
seem to be able to cope with this problem in an acceptable way.

6.3 Modelling the output-oriented subsystem

The output-oriented subsystem should be derived from a specification of
the information needs of the users. Such a specification could be regarded
as a complement to the conceptual model, and it could also be used as a
tool for checking the completeness of the statical and dynamical parts of
the conceptual model. Languages for specifying information needs visavi
conceptual models have been proposed, for example INFOL based on alfa-
beta- and alfa-beta-gamma-analysis [2], [15].

The output-oriented subsystem of a statistical information system should
be able to retrieve data from the statistical database, execute different
kinds of statistical analyses, and produce tables, graphs, and other forms
of presentations of statistical results. On a conceptual level many of these
functions may be modelled in terms of statistical queries, or so-called alfa-
beta-gamma-delta queries:

15

a: for <object type> with <property>
B: give [< statistical operator > (< list of variables >)]
x : by < combination of variables >
ô : where < list of definitions > ;

Example. "Number of households with more than one person, and their
average income, by region and type of household":

for HOUSEHOLD with size > 1
give count, average (income)
by region type
where region = REGION(yja LIVE_IN).name;

Alternatively, we may think of the statistical query as an expression in the
conceptual algebra:

<obj type > (with <prop>)(by < partitioning >).
[<op>([<var>])]

The same example as above could then be phrased:

HOUSEHOLD(with size>l)(by region type).
(count, average(income))

It should be noted that all properties and variables appearing in the
schemes above could themselves be expressions in the conceptual algebra.
In the alfa-beta-gamma-delta scheme the delta clause offers a convenient
alternative for introducing such derived concepts, and to give them, at the
same time, their own names.

The graphical technique used by Shoshani [16] and others is another way
of modelling statistical queries. This technique is sometimes not purely
conceptual, but takes also into account table layout aspects of the query,
like which variables in a cross-classification that should occur along the
vertical axis, and which should occur horizontally.

By analyzing a representative set of statistical queries that are expected to
hit the database, the designer (and/or the design tool) could make rational
decisions concerning access paths to be supported on the datalogical level.
For example, variables appearing in the alfa part of an alfa-beta-gamma-
delta query are candidates for being indexed.

6.4 Modelling the transformation subsystem

The transformation subsystem should be derivable from the combined
specifications of the three other subsystems: different transformations are
necessary to transform within and between

• data structures representing the base version of the con­
ceptual model

16

• data structures representing input-oriented views

• data structures representing output-oriented views

To some extent these transformations can be described precisely, and yet
on a relatively high level by means of languages such as (on the infological
level) the conceptual algebra illustrated in this paper, and (on the
datalogical level) the relational algebra [7], SQL [7], and the base operator
algebra [15, 23].

7 Conclusions

Some of the major conclusions of this paper were stated in the form of
propositions in section 4. Among other things I seem to have claimed that

conceptual modelling is (or can be extended to become) a
comprehensive and complete methodology for specifying the
external requirements on an information system;

a satisfactory design of an information system and its different
subsystems and functions can be derived (in a manual or
computer-aided way) from such a comprehensive and com­
plete specification (an extended conceptual model);

the specification should be structured as a set of (sub)specifi-
cations, corresponding to views of the conceptual model, in
accordance with a functional architecture of the information
system, containing a database subsystem, an input-oriented
subsystem, an output-oriented subsystem, and a transforma­
tion subsystem;

the design methodology and the computerized tools support­
ing it must be adapted to the organization and the type of
applications that the information systems are to support.

The organization and application dependency of information systems
development methodology and tools is verified by my experience from
information systems development at a statistical office, which I have briefly
summarized in the paper.

My conclusions, if correct, imply that so-called CASE tools should be
tailored for the particular needs of particular types of applications and
organizations, hopefully on the basis of open-ended, generalized appli­
cation development platforms. Such CASE shells or tool-kits could
probably make good use of a number of generalized software products that
are already available "off the shelf like word processors, drawing
programs, database management systems, and expert system shells.

17

8 References

[1] Langefors, B: Theoretical Analysis of Information Systems;
Studentlitteratur, Lund, 1966, 1973

[2] Sundgren, B: An Infological Approach to Data Bases; Urval
nr 7, Statistics Sweden, Stockholm 1973

[3] Klimbie, J W and Koffeman, K I (editors): Data Base
Management; Proceedings of the IFIP Working Conference
on Data Base Management, North-Holland 1974

[4] Sundgren, B: Theory of Data Bases; Mason/Charter, New
York, 1975

[5] Chen, P P-S: The Entity-Relationship Model - Toward a
Unified View of Data; ACM TODS 1, No 1 (March 1976)

[6] Brodie, M L, Mylopoulos J, and Schmidt J W (editors): On
Conceptual Modelling - Perspectives from Artificial Intelli­
gence, Databases, and Programming Languages; Springer
Verlag, New York, 1984

[7] Date, C J: An Introduction to Database Systems; Volume I,
4th Edition, Addison-Wesley 1986, and Volume II, Addison-
Wesley 1983

[8] Smith, J M and Smith D C P, Database Abstractions: Aggre­

gation and Generalization; ACM TODS 2, No 2 (June 1977)

[9] Kent, W: Data and Reality; North-Holland 1978

[10] ANSI/X3/SPARC Study Group on Data Base Management
Systems: Interim Report; FDT (ACM SIGMOD Bulltetin) 7,
No 2 (1975)

[11] Graves, R B: Data Base Modelling as an Aid to Data Editing;
Statistics Canada and UN ECE/CES ISIS'79 Seminar,
Bratislava 1979

[12] Sundgren, B: Conceptual Design of Data Bases and Infor­
mation Systems; R&D Reports E19, Statistics Sweden 1984

[13] Malmborg, E: The OPREM Approach - An Extension of an
OPR Approach to Include Dynamics and Classification; R&D
Reports E12, Statistics Sweden 1982

[14] Jackson, M: System Development; Prentice-Hall 1983

[15] Sundgren, B: Coordination Proposals to Improve the Impact
of SCP Software Development; Report (and appendices) to
the UN/ECE Statistical Computing Project, Geneva 1988

18

[16] Shoshani, A: Statistical Databases: Characteristics, Problems,
and Some Solutions; Proceedings of the 8th International
Conference on Very Large Data Bases 1982

[17] Bethlehem, J G; Denteneer, D; Hundepool, A J; and Keller,
W J: The BLAISE System for Computer-Assisted Survey
Processing; Netherlands Central Bureau of Statistics 1987

[18] Dahl, R; Eriksson, D; Johansson, L-Å; Sundin, U; and
Torbjär, H: RAMATIC - A Modeling Support System;
SYSLAB Report No 34, Chalmers University of Technology
and University of Göteborg 1985

[19] Nilsson, A G: Information Systems Development - A Frame
of Reference and Classifications; Polish-Scandinavian Semi­
nar, Paraszyno, Poland, June 1988

[20] Sundgren, B: Conceptual Modelling as an Instrument for
Formal Specification of Statistical Information Systems; 47th
Session of the International Statistical Institute, Paris 1989

[21] Malmborg, E: On the Use of Semantic Models for Specifying
Information Needs; Statistics Sweden R&D Reports 1989:5

[22] Sundgren, B & Lagerlöf, B & Malmborg, E: User-Oriented
Systems Development at Statistics Sweden; Statistics Sweden
R&D Reports E24 and Proceedings of the ISIS'86 Seminar,
Bratislava, Czechoslovakia, May 1986

[23] Sundgren, B: Base Operators as a Tool for Systems Develop­
ment; Statistics Sweden R&D Reports 1988:3

[24] Lagerlöf, B: Development of Systems Design for National
Household Surveys; Statistics Sweden R&D Reports 1988:4

[25] Sundgren, B: A Session with the CONDUCTOR; Statistics
Sweden R&D Reports E23, 1985

[26] Balestrino, R & Montagna, S & Rossi, M: Survey Question­
naire Design - Work-in-Progress; ISIS'90 Seminar, Bratislava,
Czech and Slovak Federative Republic, May 1990

19

APPENDIX 1.

THE OPR APPROACH TO CONCEPTUAL MODELLING

(See also [12] and [20].)

1 Basic version of the approach

1.1 Basic concepts

The Object-Property-Relationship (OPR) approach is an example of a
methodology for conceptual modelling that is based on three concepts:
objects, properties, and relations. With a slightly different terminology, this
type of approach is often called the Entity-Attribute-Relationship (EAR)
approach, or the Entity-Relationship (ER) approach.

An object is any concrete or abstract entity (physical object, living creature,
organization, event etc) that the users of the information system may be
interested to have information about. Objects will always have properties,
quantitative or qualitative. For example a person (as modelled for a
certain purpose) may have an age, a home address, an income, etc. A
company may have a certain number of employees, a certain legal form
(like 'incorporated'), a certain economical result, etc. A traffic accident
may be characterized by the time when it happened, the number of
persons and vehicles involved, the properties of the road, where it took
place, weather conditions, etc. For both objects and properties it is
important to distinguish between types and instances (occurrences).
Property types are usually called variables or attributes. A variable may
also be thought of as a function between a set of object instances
belonging to a certain object type and a set of values belonging to a
certain domain. Being a function a variable should be single-valued, but
sometimes modelling situations occur, where a variable needs to be
specified as multi-valued. For example, one and the same company may
be active in several branches of industry at one and the same time.

The logical link between an object and a property is sometimes called an
association. Objects may also be linked to other objects. Such links are
called object relations, or simply relations (relationships). Relations are
often binary, that is, they link two objects to each other, but there are
sometimes relations of a higher degree, or dimension. For example, a
country (object 1) may export a certain commodity (object 2) to another
country (object 3); thus this trade relation is an example of an object
relation of degree 3.

20

1.2 The object graph

An object system can be visualized by means of a so-called object graph.
An example is shown below. In the object graph, the objects are represen­
ted by rectangles, the (object) relations are represented by lines between
the object rectangles, and the variables of the objects are represented by
"dots" linked to the object rectangles. An asterisk (*) after the name of a
variable indicates that the variable is multi-valued. All concepts are repre­
sented on the type level in the object graph.

1.3 Relations: functionality, cardinality, and partiality

The object graph indicates the functionality for relations. A binary relation
may be one-to-one (< — >), one-to-many (< — <), or many-to-many (> —
<). Cardinality is a more general concept, which can be used also in the
specification of relations of higher degree than 2.

The "half-circles" inside object rectangles in the object graph indicate
partiality (as opposed to totality) of the relation visavi the object type, that
is, only some (but not all) of the object instances belonging to the object
type participate in the relation. For example, only some persons work for
companies, and only some companies have persons employed.

1.4 Relational objects and dependent objects

Sometimes we need to associate a property with a relation rather than with
an object. For example, in the object graph above, we might like to
indicate the salary that a person obtains by being employed by a certain
company. This can be solved by objectifying the relation
WORKFOR/EMPLO Y into a so-called relational object (an entity which
is at the same time a relation and an object) EMPLOYMENT:

Relational objects are an example of dependent (or weak) objects in the
sense that all instances of the object are, for their own existence,
completely and essentially dependent on the existence of a particular
instance of another object. Thus a particular EMPLOYMENT instance in

21

the example above is for its existence essentially dependent on the
existence of a particular PERSON instance, as well as on the existence of
a particular COMPANY instance. Other examples of dependent objects
could be the EXAMs passed by a STUDENT, or the ORDERITEMs of
an ORDER:

Note the usage of the dot symbol (•) to indicate the dependent object.

1.5 Generic hierarchies and subtyping

One important refinement of the OPR modelling approach is the
introduction of generic hierarchies of object types ([8], [13]), where objects
on lower levels represent subtypings of objects on higher levels, and where
the lower level objects inherit the properties of the higher level objects.
An example:

A related refinement is the distinction between total and partial relation­
ships; a relation is partial with respect to an object type, if only a proper
subset of the objects belonging to the object type is involved in the rela­
tion. Partiality implies subtyping:

The example shows that by properly subtyping PERSON and COMPANY,
we may change the status of the relation WORK_FOR/EMPLOY from
'partial' to 'total'.

22

2 Conceptual modelling of object system dynamics

As indicated by the object graph the basic version of an OPR model is
essentially statical. It models the situation in the object system at a certain
point of time. Later developments have introduced dynamical aspects into
the OPR approach; see for example works by Jackson [14] and Malmborg
[13]. Dynamical aspects are important in several ways:

1. In order to come to grips with the definition of a certain
object type, it is often essential to penetrate the criteria for
birth and death of objects belonging to the object type. For
example: what is it that constitutes the birth (or the death) of
a household, a company, etc; or similarly: what changes can
an object undergo, and still remain in some sense the same
object?

2. Births and deaths of objects in the object system, and (other)
changes of states of (the variables of) the objects imply a
need for update transactions visavi the information system
and its database.

3. The users of the information system are often interested to
study the development over time in the object system. This
development can sometimes be described in terms of the
situation in the object system at regular time intervals, but
sometimes (for example in connection with longitudinal studi­
es) it is necessary to be able to describe and request in­
formation about more complex chains of object-related events
and changes of states.

The consequence matrix [12] and life history diagrams [14] are two
examples of conceptual tools and graphical techniques that have been
developed to systematize and illustrate the dynamical aspects of an object
system. We shall use the following example to illustrate these tools:

2.1 Birth/death analysis

During birth/death analysis we look systematically for birth/death events
of each one of the objects and each one of the relations in the object
system. In the example above we may thus identify events like

Î PERSON: E1 = "physical birth of person";
i PERSON: E2 = "physical death of person";

t HOUSEHOLD: E3 = "some person(s), but not all, leave a household and form(s) a new one";
I HOUSEHOLD: E4 = "all persons (possibly one) leave a household and move into an existing

household",
E5 = "all persons (possibly one) in a household die" (implies event E1*);

tl REGION: E6 = "political/administrative decision to change the regional structure";

23

2.2 Consequence analysis and the consequence matrix

Birth/death analysis is a kind of precedence analysis [1]. We may turn it
around into succedence analysis [1] by asking for all birth/death conse­
quences of a certain event. The results of such a consequence analysis may
be summarized in a consequence matrix. In the example we get:

An upward directed arrow means "birth", a downward directed arrow
means "death". Asterisk (*) means repetition (zero, one, or more), and a
small circle (°) indicates a conditional effect. Every column should contain
at least one birth event and (usually) at least one death event, otherwize
we have missed something in the analysis.

2.3 Life histories and career analysis

By bringing together the information in the consequence matrix about
events concerning a certain object and other objects' relations to this
object, and by structuring this information properly, we can outline a
typical life history of an instance of the object, as implied by the con­
ceptual model. JSP diagrams [14] may be used to visualize life histories.
In the example above we may model the life history of a household in the
following way:

Similarly we may model so-called careers like the marital life, the
education, or the criminal career of a person, the medical record of a
patient, etc. Example:

24

25

APPENDIX 2

OUTLINE OF A CONCEPTUAL ALGEBRA FOR FORMING
NEW CONCEPTS AND VIEWS

(See also [20].)

It is often necessary to distinguish between the base version of a con­
ceptual model and different views of it, containing permanent or temporary
extensions and modifications that adapts the conceptual model to the
needs of a particular (group of) user(s) or application(s). For example, in
a statistical information system it is usually important to be able to apply
both a micro perspective and a macro perspective to the same object
system, and the same set of data, regardless of how the data are actually
stored.

All the objects, properties, and relations in a view must be defined in
terms of the concepts specified in the base version of the conceptual
model. The author of this paper once outlined a conceptual (or infological)
query language [4]. Here we shall show, by means of examples, how a
generalized version of this language can be used for the specification of
new concepts and views, when modelling a particular object system. A
formalization of most of the syntax used here can be found in [15].

The different definition schemas, examplified below, for forming new
objects, variables, and relations may be thought of as a set of conceptual
operators that produces, in the sense of an algebra, new concepts from
those which have already been defined.

1 Conceptual operators defining new object types

Example 1. Definition of a new object type:

The general definition scheme for deriving new objects is:

<new object type> = = < object type > (with < property>);

The < property > may in turn be a derived concept, involving boolean
expressions, derived variables (see examples below), etc. The '= =' symbol
should be read 'equals by definition'.

26

2 Conceptual operators defining new variables by means of
grouping, arithmetical transformation, aggregation, and
adjunction

Example 2. Definition of a new variable by means of grouping:

The general definition scheme for grouping variables is:

< grouped variable > == [< constant > [if < property >]] ;

where [<element>] is a list of elements, separated by commas, and
[< element >] is an optional element.

Example 3. Definition of a new variable by means of arithmetical
transformation:

The general definition scheme for arithmetical transformations of variables
is:

< newvariable > == [< arithm expr > [if < property >]] ;

Note that with this definition scheme, variable grouping becomes a special
case of arithmetical transformation.

Example 4. Definition of a new variable by adjunction:

The general definition scheme for adjoined variables is:

< adjoined variable > = = < path >. < variable > ;

where <path> determines a unique chain of relations from the object of
< adjoined variable > to the object of < variable >. Each link in the chain
has the form

< object type > [(via < relation >)].

where the Via' part is necessary if there is more than one relation between
two objects in the chain. Further it should be noted that < object type>
could be derived. In particular it could be restricted by means of a '(with
< property >)' clause in order to ensure that the ultimately generated
adjoined variable becomes single-valued; (cf the definition of
'PERSON.main_employer' in Example 5 below).

27

Example 5. Definition of a new variable by means of aggregation:

The effect of inserting an aggregation operator with zero (like count), one
(like sum, average, max. min), or more (like correlation) arguments into
a derivation is to reduce a set of values into one single value. The aggre­
gation operator also has the effect of adjoining the aggregated variable to
an object, which is on the next higher level in an aggregation hierarchy.

3 Conceptual operators defining new object relations

Example 6. Definition of a new object relation:

4 Dynamical aspects

In some types of information systems life histories of objects are of great
interest, and techniques like JSP diagrams may be used for modelling the
life history of an object as a structured flow of events associated with the
object. The events that make up the life history of an object may also
themselves be regarded as objects. By doing so we make it possible to
incorporate the dynamical aspects of an object system in a traditional,
state-oriented OPR model. This is done by defining one or more one-to-
many relations between the object, whose life history we are interested in,
and one or more categories of events. Time should be a mandatory proper­
ty of the event objects, and a possibility to define a conceptual ordering of
the instances of an object type on the basis of a property (in this case
'time') should be introduced among the conceptual tools of OPR, together
with some operators (like 'first', 'last', 'next', 'before' and 'after') for
referring to this ordering. For example we could model the marital history
of a person like this:

And a derived variable like "a person's average time between marriages"
could be expressed something like this (assuming proper handling of null
values):

28

	R & D Report 1990:12. Conceptual modelling and related methods and tools for computer-aided design of information systems

	Inledning

	R & D Report 1990:12. Conceptual modelling and related methods and tools for computer-aided design of information systems
	1 Information systems design methodologies and computerbaseddesign tools
	2 A general architecture of information systems
	3 Formal specifications of information systems
	4 Some propositions concerning concept-driven CASE tools
	5 Statistical information systems
	6 Modelling the four major subsystems of a statistical informationsystem
	7 Conclusions
	8 References
	Appendix 1. The OPR approach to conceptual modelling
	Appendix 2 Outline of a conceptual algebra for forming new concepts and views
	Publikationslista

