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The Weighted Residual Technigue for Estimating the Variance

of the General Regression Estimator

by
Carl-trik Sarndal Bengt Swensson Jan H. Wretman
Statistics Sweden University of Orebro Statistics Sweden
Stockholm, Sweden Orebro, Sweden Stockholm, Sweden

Summary, Despite the advancement of computer-intensive methods for
variance estimation for compiex survey situaticns, closed form variance
estimators wiill always have strong appeal. In this paper we construct a
simple yet general method for estimating the variance of the general
regression estimator. The method calls for weighting of the regression
residuals when the variance estimator is calculated by the well-known
Horwitz-Thompson formula. The weights are obtained in a simple way
from the general regression estimator formula. A strong point in favour of
the proposed technique is that it can be defended from design-based
criteria as well as from model-based criteria, and that it works well for
certain kinds of conditional inference. I[llustrative examples of the
technique are given, including consequences for the important practice of

poststratification.

1. Introduction.

There is a considerable literature on variance estimation for survey
estimates; a thecrough account is given in the recent book by Wolter (1985).
Some recent methods, such as the boot-strap, are computer intensive. Even
if re-sampling is not involved, the calculation of a variance estimator is

often heavy. Simple, closed form variance estimators, such as the one



examined in this paper, will always have strong appeal.

In survey sampling, the recent emphasis on linear statistical modeling
has stimulated progress in the model-based approach to inference in
surveys, as well as in the design-based (randomization theory) approach.
Holt and Smith (1979), Royall and Cumberland (1978, 1981a, 1981b) and
other advocates of the model-based point of view have made important
remarks on variance estimation, some of which put the finger on
weaknesses in the traditional techniques of variance estimation. Even for
widely used estimators, such as the cliassicel ratio estimator and the
classical simple regression estimator, the issue of variance estimation
has not been finally resolved. Studies by Wu (1982), Wu and Deng (1983),
Deng and Wu (1987) show that it is hard to single out a "best” variance
estimator; bestness depends on the performance criterion in use.

This paper examines a general technique for estimating the variance of
the general regression estimator, which is used to estimate a finite
population total or mean in the presence of auxiliary information,
univariate or multivariate. The spirit of the paper is to point to
agreement between design-based and model-based approaches. In
particular, the work was motivated by the question: how does one
construct a variance estimator for the general regression estimator that
combines simplicity with generality and that has favourable properties
under the sampling design as well 8s under an assumed regression model?
In this paper we develop and analyze a variance estimation technique that
meets these objectives. A different technique with roughly the same

objectives was proposed by Kott (1987); see Section 5.



Let U=(1,..,k, .., N}beafinite population, and let Yk be the value of
the study variable y for the k:th population unit. We seek to estimate the
population total t = yy+..+yy. For any given set A of population units
(A CU), weshall write 25y, for 3 ., U, forexeample, t = 3, y, .

The following example illustrates that uncritical use of the traditional
approach to variance estimation may be controversial, but that the
problem may be resolved by the approach of this paper:

Example 1.1: A simple random sample of size n is drawn from U, and

then poststratified. The usual estimator of the population total t is

~ H —

t = th, Nh gsh ) (11)
where _U—sh = Zsp Y/ Ny, is the meen of the in the sample s, composed of
those ny, units thet happen to fall in the h:th group (poststratum), Ny fis
the known size of the population group Uh, and N = Nl + .+ NH ;N o=

ny+ ..+ ny. Standard sempling texts (for example, Cochran (1977), p.

135) give the (unconditional) variance of (1.1), to first order

approximation, as
S N2 H 2
where f=n/N, W, =N./N, Sup? = Sup (Y - Gup)/(Np-1), with

—U_Uh = Zup Yg/Np - The standard technique for building a variance

estimator is to use the variance as a starting point. Thus, replacing SUh2

in (1.2) by its sample analogue Sg;h2 = Zgp (Yg - gsh)Z/(nh—l), we get



A H 2
Vol = N2 {1 -10/n) 3 Wy g2, (1.3)

whose average value (over repeated simple random samples with Ny, 2 2)
equals (1.2), so the estimator is “correct” in design-based thinking, and

many sampling statisticians will be satisfied with (1.3). However, others

would argue, as do Holt and Smith(1979), that inference should be made
conditionally on the realized semple configuration n=(ny, .., n,, .., ny)' .

If such an outlook is adopted, one reason for dissatisfaction with (1.3) is

that the contribution to Vu(f) from group h equals Ssh2 times a weight
that is insensitive to n, , namely, N2 wh(l - f)/n. The statistician

favouring the conditional outlook would argue: Suppose the h:th group

happened to produce unusually few observetions, so that the realized ny

falls considerably short of its expectation, E(n,) = n W, . The natural

inclination then is to want a greater than average contribution to the
variance estimator from the underrepresented poststratum. Now, (1.3)

fails to achieve this, whereas an estimator such as

H

V{t) = (1 -1) >:h=1

N2 Ssp2/ny, (1.4)
meets the objective. In (1.4), which is the variance estimator obtained by
the technique in this paper (see Example 4.1 below), the poststratum

sample variance Ssh2 carries the weight (1 -f) Nh2/nh , whose tendency
to drop with an increase in N makes good sense from the conditional

point of view. Furthermore, in using (1.4) the advocate of design-based
inference gives up none of his principles, since (1.4) is as correct as (1.3)

in the sense that both have an average, over repeated simple random



samples, that is (at 1east approximately) equal to (1.2). We advocate (1.4)
over (1.3) and make the point that randomization theory is flexible enough

to accomodate the conditional point of view. O

2. The general regression estimator,

A probability sample, s, is drawn from U with a sampling design having

the inclusion probabilities 7, = Pr(k€s) and 7, = Pr(kand £ € s).

Note that Tk = Tk for all k. The size of s, n., is permitted to be

S
random. We examine the design-based statistical properties of estimators
of t.That is, design expectation, design bias and designh variance become
important quantities to consider. The desigh must often be chosen more
for reasons of practical and administrative necessity than to yield the
highest possible precision of the resulting estimates. Unequal inclusion

probability designs are extremely common. In design-based analysis, the

sampling weights l/nk are required, as in the approximately design
unbiased general regression estimator of t,

f= Sgy/me + (Syxg - Sgx/m ) B, (2.1)
where B is a g-vector of estimated regression coefficients, and EU Xy

is the known total of the auxiliary g-vectors Xy, .., Xy . Estimators of

this form were discussed by Cassel, Sérndal and Wretman (1976, 1977),
Sarndal (1980, 1981, 1982), Isaki and Fuller (1982}, Wright (1983), and
others, but prior to these attempts at unified presentation, various special
cases of (2.1) were in widespread use, for example, (1.1), (3.3) and (3.4).
Now, (2.1) appeals to an underlying regression

Yg = Xi'B+error, (2.2)



about which the only assumption is that y is well explained by the vector

X, so that the average (error)2 is small. (We do not assume (2.2) to be the

"true (superpopulation) model” that generated the population values Yy, s

Yg, - » Yy - Alternatively, we can write (2.1) as

t= 3yy v Zg e/ (2.3)

vwhere

~ A

gk = XK.B
is the predicted value for the k:th unit, obtained from the regression fit

described below, and the corresponding regression residual is

~ ~

€ks = Yg ~ Yg = Yg ~ ®B . (2.4)
Different suggestions are found in the literature on regression estimation
8s 10 the weighting of the observations when B is calculated in (2.1),
but the weighting is not of significant consequence for the large sample
efficiency of {; see Sarndal (1980), Wright (1983).
Our definition of B springs from wanting to see B as the ordinary

7-weighted estimator of the unknown finite population regression vector
B = (3, xkxk'/ck)'I 3y XY/ - (2.5)
Clearly, B represents the result of a hypothetical weighted least squares

regression fit of (2.2) to the whole finite population (a8 "census fit"),

where the data point (gk, X, ) carries the weight l/ck , which is unrelated
to the sampling weight I/nk . Particularly simple and often used is the

uniform weighting 1/ck = 1 for all k. The choice of 1/c, is discussed

below. In the design-based approach, an obvious estimator of B is the



samplie weighted analogue
é = (ES xkxk'/ckﬂk)_1 Es xkgk/Ckak . (2.6)
Now, B is a function of a number of sample sums of the type

. for the

2 xikxjk/ck”k and Zg X Y /Cy 7y, Where X, is the value of x;

k:th unit. Each of these sample sums is design unbiased and, under

appropriate conditions on moments up to fourth order and on the inciusion

probabilities, design consistent for its population counterpart. For
example, Z¢ Xikxjk/ck”k is design consistent for 2, xikxjk/ck St
follows that B is design consistent for B . The conditions, given, for
example, in Isaki and Fuller (1982), will be referred to as the regularity

conditions. In the rest of the paper we assume that (2.6) is the

expression for B in the estimator (2.3).

The weighting 1/c, will be chosen here to achieve simplicity of form

and to eliminate the possibility that the estimator (2.3) be unduly

influenced by the simultaneous occurrence, for one or several units k, of

a large residual ks and a large sampling weight I/ﬂk . We can, in fact,

achieve that 2g e (/7 = 0 forall s by restricting the weights 1/c, to

within a certain class of weights. As is easily verified, (2.3) reduces to

"the simple projection estimator” (Sérndal and Wright (1984)),

if the ¢y in (2.6) are taken as
Ck = N X, (2.8)

for any g-vector A\ independent of k and such that Ck >0 for all k.



That is, the simple form (2.7) obtains if Ck is any convenient positive

linear combination of the available X-variable values. For a simple

example, supposing that X contains the constant one, then Cx = 1 for

all k is one choice that yields the simpie form (2.7).

An alternative objective for the weights 1/c, is, obviously, to try to

choose them so as to minimize the variance of { under the given design.

However, one can not hope to find a set of weights I/ck that is best,

uniformly for all populations y,,.., yy. Moreover, even if weights /¢y

may be found that give reduced variance for some populations, the gain in

design-based efficiency (compared to a "convenient” set of weights) would

at best be modest. To select the strongest possible auxiliary variables x;

is @ more important preoccupation in design-based thinking than to seek

"optimum” weights l/ck . The practical approach is to use weights that

satisfy (2.8) and give the simple form (2.7); such a weighting is assumed

from now on.

3.The implied weijghts

The estimator (2.7) can be expressed as a linear combination of the
T-expanded y-values y, /7, :
f = ES gks gk/ﬂk ’ (3.1)

namely, if we define, for k € s,

ng = (EU xk)l (ES kak'/Ckak)-l Xk/Ck s (3.2)

called the g-weight of unit k, where c, is of the form (2.8). The



g-weights are sample dependent and implied by the equivalence of (2.7)
and (3.1). They are somewhat akin to the elements of the "hat matrix” in

regression diagnostics, see Hoaglin and Welsch(1978).

Example 3.1, The ratio estimator arises from (2.7) if %, = X, &
scalar, and Ci & X!
t = (S %) (Cg Y/ 1)/ (Sg %, /7). (3.3)
Here, the g-weight is the same for all k in a given s, namely,
Oes = Cyx) 7/ Cgx/m) . 0
Example 3.2, The simple regression estimator is obtained from (2.7) if
X = (1, xk)‘, and c, = ¢, aconstant, for all k:
t = N(Ug + B(xy - X)), (3.4)
where ¢ = (3¢ Y /7 )/ N; Xg = (S % /M )/N; N = 36 1/71,
%y = (2 %K)/N, end
B = {Zg (% - XYy = UM/ T M {(Sg (% = X2/, ) .
From (3.4), we identify the g-weight of unit k as
Ops = NINTT + (X - Rxy - RINZg (% - XD2/m M (3.5)

which depends on k as well as on s. O
We now show three properties of the g-weights that will be used later:

Property 1. The g-weights yield "perfect estimates”™ when applied to

the xk—values:

ES gks Xk/ﬂk = EU Xk . (36)
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Property 2 For m =1 and 2, and for any fixed s,

To (0™ /T = 3y (g™ ey (3.7)
where ¢, is of the form (2.8).
Property 3. For each fixed k, g, o canbe viewed as a random variable,

the random element being s, whose distribution is determined by the

design, and for each k, g, converges in design probability to unity,
under the regularity conditions: Letting
Te=Zg XX /ey . Ty = ZyXeX/cp
we have that TU Ts" P Iqxq , the gxq identity matrix, and so
Oks = NTyTs % /e, —E— Wxe/ep = 1,
where —E—s denotes convergence in design probability, and we have

used (2.8). Inlarge samples, dys May thus be approximated by unity.

4 Tt ! : timator and its design-t I rti
The primary objective in this paper is to improve current practice for
estimating the variance of (3.1). Our requirements for a variance
estimator V({) include all of the following:
(a) good properties with respect to the sampling design that dictates
the sample selection;
(b) good properties with respect to an assumed regression model;
(c) simplicity of form and applicability in general, that is, for any
design and any linear regression model.
In addition, it is a bonus if the variance estimator possesses

(d) sensible properties under a conditional inference outlook.
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With respect to the design, a requirement on V({) is that it lead to an

approximate 100(1-x)% confidence level for t, calculated as

T2, /0 (0(N2
where the constant Z1-x/2 is exceeded with probability «/2 by the
unit normal variate. We therefore require that V({) be design consistent
for V(1) However, many estimators have this property, so the choice is

still wide. We 100k to an assumed model model for guidance in limiting the

choice: In addition, our variance estimator should have a zero or very

limited bias with respect to a formulated model for the y,-values. This

aspect is discussed in Section S. (Optimality with respect to both model
and design seems a remote hope for a variance estimator. Compromise is

thus unavoidable.)

To motivete the variance estimator to be proposed, denote by E, the

“census fit residusal™

Ex = Yg - %¢B . (4.1)
where B is the population regression vector (2.5). In view of (2.8), 2y Eg
= 0. Using also (3.6), we can express the error of (3.1) as

t -t = 3gqus Ep/my - (4.2)
The approximate variance of (3.1) is commonly given in the literature as

V(D) = ZZ e, EE, (4.3)
where Ay, = Ty =TTy, E = E /7 . Note that (4.3) can be obtained

by approximating g, ¢ by unity for all k in (4.2), a step justified in large
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samples by Property 3 of the preceding section. The classical technique

for turning (4.3) into a variance estimator is to replace the unknown Ek

by its sample-based counterpart e, g, which leads to

Y

where Xk,£= Ay o/ Ty ps \e’kszeks/ﬂk , with e, s givenby (2.4), and
3Zg is shorthand for zkeszzes . The estimator (4.4) was considered in

early work on the general regression estimator, for example, Sérndal
(1981, 1982), Sérndal and Raback (1983). The Yates-Grundy version of
(4.4), which applies if the design is of fixed size, is
Uyg = - (1/2) 33¢ By, Bps - 8,602 (45)

Kott (1987) gave conditions under which (4.5) is design consistent for
(4.3).

Now, (4.4) and (4.5) are not ideal when the model considerations are
added (see Examples 4.1 to 4.3 below). We seek improvement in this regard
by the following simple modification of (4.4).

The weighted residua] variance estimator, Modify (4.4) by attaching

the g-weight g, o to the residual e :

Vg = VgD = 235 &y (GyeBis) (958 ss) (4.6)

The method was proposed in Sarndal (1982). A Yates-Grundy version of
(4.6) may also be considered, for the case when s is of fixed size.
Our first important conclusion is that when (4.4) is design consistent,

so is (4.6), under the regularity conditions. This follows directly from

Property 3 in the preceding section: Since g, converges in design
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probability to unity for all k, the g-weighting of the residuals will not
upset the design consistency. That is, from the design-based point of view,
(4.4) and (4.6) are equally correct, and the g-weighting is a seemingly
trivial step. However, from the model-based point of view the
improvement is substantial, as Section S will show. Empirical work (not
reported here) has shown that (4.6) works well for conficence intervals,
even for modest sample sizes. Before proceeding, we show by some
examples how g-weighting affects the variance estimator formula.
Example 4.1, With notation as in Example 1.1, the "general design”

poststratified estimator is

(= 5 y (4

t = zh:l Np Ysh 7)
with Uspy = (Zsp Y/ )/ N, where Ny, = 35, 1/7,. This estimator
derives from (2.7) if Xk is taken as an H-vector composed of H-1 entries

zero and a single entry "one” indicating the population group to which k

belongs, and Cy = Ch, a constant, for all units k in the h:th group. The

g-weights needed for (4.6) are in this case gy g = Nu/Nj forall kesy.

Consider in particular simple random sampling (n units drawn from N;

f = n/N), and let A = {nh -1)/nh}{n/(n—1)}, where n, is the (random)

size of sy, . Then we get from (4.6)

C H 2¢. 2
Vg = (=D F Ay Np® Sep®/np,
H
£ (1-03,_, N2 Sep?/ny (4.8)

where Ssh2 = Zgp Uy - 'g—gh)z/(nh—l), with Ysp = Zsp Yg/Np, - This
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estimator is excellent from the conditional point of view, as already

discussed in Example 1.1. By contrast, (4.4) gives a variance estimator

in which the weight attached to Sshz is proportional to Ny, instead of
proportional to nh'l as is the case in (4.8). That is, if (4.4) is used, the

variance contribution from the h:th group will increase, not decrease, as
one would like, when the group’s share of the sample gets larger. O
Example 4.2, For the Bernoulli sampling design, the inclusion or

non-inclusion in the sample s of a unit k is determined by a Bernoulli

experiment: 77, = Pr(k € s) =7; Pr(k ¢ s) =1 -7 forall k, the

experiments being independent. If we take X = 1, and 1/ck =1 for all

k, formula (2.7) leads to the expanded sample mean estimator
t=NZgy/ng ,

SO Qg = Nn/ns, where the (random) sample size ng is binomisally

distributed. Letting Ss2 = Zg (Y - Us)z/(ns-ﬂ, we get from (4.6)

Vg = {ng=1)/ngk NZ (1-37) $42/ng (4.9)

e

N2 (1-11) S¢2/ng .
The factor N2 (1-11)/ng decreases as ng increases, which makes good
sense, conditionally speaking. By contrast, (4.4) 1eads in this case to

Oy = N2 (1-m) (ng- 1S 2/{EM N2 (4.10)
where E(ng) = N7, Here, the factor ng-1 in the numereator is unfortunate.

"Traditional reasoning” may alternatively lead to the variance estimator
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O N2 /(1- 2
Vu=N“(1-1) Sq /{E(ng)} (4.11)
which is also inappropriate, since independent of n, . All of (4.9) to

(4.11) are design consistent, but only (4.9) has definite appeal,

conditionally on ng. O
Example 4.3 We return to the classical ratio estimator (3.3) seen in

Example 3.1. The weighted residuai variance estimator (4.6) becomes
Y 2
Vg = {(2U X )/ (Zg xk/ﬂk)} 335 A g Bpslps

where epg= e o/ = (Y = bX )/ 7, with b= (34 y /7 )/(Zg % /7).

For simple random sampling, letting Xg

= 3¢ X /N; Ug = Zg X /n and

Ses? = Zg (U (Tg/ X% }2/(n-1),
we get

Vg = (RU/FHZNZ(1 - 1)/n) 8442, (4.12)
a variance estimator that has received much attention in recent literature
on the ratio estimator, for example, in Wu (1982), Wu and Deng (1983).
Royall and Cumberland (1981a) use an estimator that is only slightly
different. As aresult, (4.12) is now generally considered superior to the
“traditional” formula (Cochran (1977), p.155)

Uy = N2 - 1)/n) 5,2 D
Example 44, The g-weights that apply for the simple regression

estimator (3.4) are given by (3.5). In the special case of simple random

sampling, the g-weighted variance estimator (4.6) becomes simply

Og = NZA(1 - 1)/n) 3¢ (gygeye)?/(n-1)
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where ey = U - Yg - B(xy = Xg) s Ggs = 1+ n(Xy - X)Xy = Kg)/ Ay,
with Ay, = Zg (xk—Ys)Z; B =3¢ (U~ U)X ~Xg)/ Ay, . This result agrees
in essence with (but has simpler structure than) the variance estimators

suggested by Royall and Cumberland (1978, 1981b) in their work on robust

variance estimation in the model-based context. ]

5. Properties under the mode]l of the proposed variance estimator

We now examine the properties of the variance estimator (4.6) by

assuming for y,, .., Yy @regression model, denoted £ and given by
Ug = X¢B + g

where the €, are independent under the model, and such that

Eg(ek) = 0; Vg(ek) = sz = g2 Cy = o2 A% (5.1)
for some choice of A. We let Eg and Vg be the mean and variance
operators, respectively, with respect to the model. In the image of (4.6),
we consider

U% =333 Ky p (94 sEi (0 6T p) (5.2)
where Ry, = (T, = 7,7 )/ 7, € = €/7,. Since the g, are
unobservable model errors, V* is obviously not a variance estimator, but
serves as a tool for the argument. The "real” estimator, Qg given by (4.6),
is the "sample copy” of V*, obtained by substituting the calculated

residual eyq = Yy - xk'B for the unobservable ¢,. We have

Eg(eks - €k> =0 ; Vg(eks - Ek) = Xk' Vg(é) Xk .
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Under general conditions, the difference V* - V_ converges in model

g
probability to zero.

A principal concern in the model-based examination, as in Royall and
Eberhardt (1975), Royall and Cumberiand (1978), Kott (1987), is to see

how well a variance estimator succeeds in predicting the model Mean

Square Error, MSEg(f) = Eg{(f—t)2). For V* we obtain the following

important conclusions:

For any given realized sample s,

B E(I®)

Zs (gks(fk/ﬂk)z - zu ngsz , (53)

(i) MSE((D) = 3¢ (gys0y /)% - 3y oy’ . (5.4)

(iii) the Relative Model Bias (RMB) of V* is

RMBg(V*) [Eg(V*) -MSEg(t)]/MSEg(t)

- 3 (Ggs~ N0 27 (36 (G /T2 - 2y 02} . (5.5)

Here, (5.5) is an immediate consequence of (5.3) and (5.4), the proofs

of which use that, for m=1 and 2,
5¢ (9p)™Mo 2/ = 3 (g™ 1o 2, (5.6)
which follows from (3.7), if we note that the model (5.1) assumes that

Gk2 « Cp = Xxk . Now, Eg(ekel) =0 forall k = £, so
(V%) = 3¢ (9s0 /M) = Ig (Gys0i)%/ 7 -

Here, use (5.6) with m =2 to transform the negative term on the right

hand side, which gives (5.3). To prove (5.4), use (3.6) to obtain

~ -1 _
t-t= ZS (ﬂk ng I)Ek + zu_s €k )
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Now, a straightforward evaluation of Eg{(f - 1)2) = MSEg(f) leads to
(5.4), by use of (5.6) with m = 1.
The results (5.3) to (5.5) prompt the following comments:

(1 RMBg(V*) is exactly zero for some important situations. An
example is the situation of Example 4.1, where g, ¢ = Nh/Nh for all k in

group h. Now, if the design is stratified simple random sampling, with the

fixed sampling fraction nh/Nh = Ty, for k instratum h, then Iks = 1

for all k, and thus RMBg(V*) =0 .
(2) Even if not exactly zero, RMBg(\?*) is often small. The reason is

that in (5.3) and (5.4) the first (positive) term on the right hand side is

common to the two expressions; moreover, since it involves ﬂk'2, this

term dominates the second (negative) term in both expressions. in
particular, for simple random sampling, this amounts to saying that
RMBg(\?*) is negligible if the sampling fraction f =n/N is negligible, as
illustrated in Example 5.1 below.

(3) It is straightforward, in a case where RMBg(V*) is not already
zero, to adjust ¢U* so as to remove its model bias. But in practice this
hardly seems worth the effort, because (a) the numerical impact of the
bias removal is ordinarily small, and (b) the bias removal may complicate

the form of the variance estimator, and (c) the bias removal appeals to a

model which, however well it fits the data, is only an assumption. The

properties of V* under the model are sufficiently good (that is, RMBg(Q*)
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is sufficiently close to zero) in order that we should not be concerned
about the minor model bias. The model is consultative, not normative, for
design-based practice.

The comments are illustrated by the following example.

Example 5.1. We reconsider the case of simple random sampling

(n units from N, so that Ty = n/N = f for all k), and the ratio estimator

{= NX Ug/%s -
Consider the "ratio model”

U = BXp * € (5.7)
with independent errors such that Eg(ek) = 0, Vg(ek) = szk. The
variance structure satisfies (2.8). Since Oys = 'x_U/?('s , (5.2) becomes

U* = (/%P2 N2 (1 - D)/n) 5.2 (5.8)

where 5832 Zg (g - ?3)2/(n-l), with €= 35 ¢./n. A calculation
gives

RMB (V) = = {1/(1 = DH(RY - X/ Xy_g)
where ?U—s = (2y-g xk)/(N-n) .That is, even if a realized sample is highly
unbalanced, so that (X) - Xg)/X ¢ deviates substantially from zero,
RMBQ(\A/*) will be near zero if the sampling fraction f is small.

Substituting ey g = Y, - (Yg/Xg)xy fOr g, in (5.8), we get the variance

estimator (4.12) favoured in recent literature.
To conti/n\ue the example, let us remove the model bias of v * given by

(5.8). Let G2 be any model unbiased estimator of 2. Then
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N

Uxx = Ux e (NRYRQ - X))/ K)o 2 (5.9)

is unbiased under the model, that is, Eg(o**) = MSEg(f). If in particular we
choose G2 = Sesz/_x_s , the model unbiased estimator (5.9) becomes

U= = (XyRy-s/ (X2 N2 {(1 - 1)/n) S 2
Most practitioners would probably feel indifferent between VU** and V* .

That is, they would consider rather unimportant whether (?U/?s)2 or

(YUYU_S)/(YS)2 be used as a multiplicative factor, but the presence of

either factor will most likely be seen as important, because it augments
the variance estimate when the realized sample happens to be one in which
X,

¢ is small compared to %, O

Note finally that V* given by (5.2) is made functional by putting the

calculated residual ey o = Yy - xk'B in the place of ¢. This step, which

gives the weighted residual estimator (4.6), adds a minor model bias.
Again, a bias removal term can be applied, but from a practical standpoint,
the incentive to do so is not strong, since for modest to large sampiles, the
numerical impact of such a term would be very small. The main objective
of the model consideration is, as pointed out, to assist in the choice of a
variance estimator.

Concluding remark, It is of interest to compare with the method of
Kott (1987), which yields variance estimators for (2.6) that are (a)
design consistent and (b) unbiased under an assumed regression model. He
proposed to multiply the Yates-Grundy formula (4.5) by the "adjustment
ratio”

AR(Vyg) = Ec{(E-02)/E (Vyg).
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The result, evidently, is to make the variance estimator
A~ 0 A A
unbiased for Eg((f-t)2} = MSEg(f), under the model ¢. This interesting

suggestion leads to a correction factor that is often a rather compiex
expression, even for simple regression models, as shown in the examples

of Kott(1987). O



22
REFERENCES

Cassel, C.M., Sarndal, C.E. and Wretman, J.H. (1976). Some results on
generalized difference estimation and generalized regression estimation

for finite populations. Biometrika 63, 615-620.

Cassel, C.M., Sarndal, C.E. and Wretman, J.H. (1977). Foundations of

Inference in Survey Sampling, New York: Wiley.

Cochran, W. G. (1977). Sampling Techniques, 3rd edition. New York: Wiley.

Deng, L. Y. and Wu, C. F. J. (1987). Estimation of variance of the regression

estimator. J. Am, Statist, Assoc 82, S68-576.

Hoaglin, D. C. and Welsch, R. E. (1978). The hat matrix in regression and
ANOVA. The American Stetistician 32, 17-22.

Holt, D. & Smith, T. M. F. (1979). Post Stratification. J R, Statist Soc. A
142, 33-46.

Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression
superpopulation model. J_Am Statist Assoc. 77, 89-96.

Kott, P. S. (1987). The design unbiased regression estimator and its
conditional variance. Manuscript seen by the courtesy of the author.

Royall, R. M. and Cumberland, W. G. (1978). Variance estimation in finite
ppopulation sampling. J. Am, Statist Assoc, 73, 351-358.

Roysall, R. M. and Cumberland, W. G. (1981a). Anh empirical study of the ratio
estimator and estimators of its variance. J._Am, Statist, Assoc, 76, 66-88.

Royall, R. M. and Cumberland, W. G. (1981b). The finite-population linear
regression estimator and estimators of its variance - an empirical study.
J.Am. Statist. Assoc. 76, 924-930.

Royall, R. M. and Eberhardt, K. R. (1975). Variance estimates for the ratio
estimator. Sankhya C, 37, 43-52.

Sérndal, C. E. (1980). On mr-inverse weighting versus best linear weighting
in probability sampling. Biometrika 67, 639-650.



23

Sérndal, C. E. (1981). Frameworks for inference in survey sampling with
applications to small area estimation and adjustment for nonresponse.

Bull. Int, Stat _Inst, 49:1, 494-513.

Sérndal, C. E. (1982). Implications of survey design for generalized
regression estimation of klinear functions..J Statist Plan. Inf 7
155-170.

Sarndal, C. E. and Raback, G. (1983). Variance estimation and unbiasedness
for small domain estimators. Statistical Review 1983:5 (Essays in Honor
of Tore E. Dalenius).

Sérndal, C. E. and Wright, R. L. (1984). Cosmetic form of estimators in
survey sampling. Scand, J. Statist. 11, 146-156.

wolter, K. M. (1985). Introduction to Varjance Estimation. New York:
Springer-Verlag.

wWright, R.L. (1983). Finite population sampling with multivariate auxiliary
information. J, Am, Statist Assoc, 78, 879-884.

wu, C.F. (1982). Estimation of variance of the ratio estimator. Biometriks
69, 183-189.

Wu, C. F. J. and Deng, L. Y. (1983). Estimation of variance of the ratio
estimator: an empirical study. In Scientific Inference, Data Analysis an
Robustness, ed. by G. E. P. Box et al. New York: Academic Press, 245-277.



R & D Reports ar en for U/ADB och U/STM gemensam publikationsserie som
fr o m 1988-01-01 ersdtter de tidigare "gula" och "grona" serierna. I
ser;en ingdr dven Abstracts (sammanfattning av metodrapporter frén
SCB).

R & D Reports, Statistics Sweden, are published by the Department of
Research & Development within Statistics Sweden. Reports dealing with
statistical methods have green (grén) covers. Reports dealing with EDP
methods have yellow (gul) covers. In addition, abstracts are published
three times a year (1ight brown (beige) covers).

Reports published earlier during 1988 are:

Nummer Titel (forfattare)

1988:1 Abstracts I - Sammanfattningar av metodrapporter
(beige) frédn SCB

1988:2 Coverage Probabilities for Confidence Intervals Based
(gron) on Stratified Random Sampling (J6rgen Dalén)

1988:3 Base Operators as a Tool for Systems Development
(qul) (Bo Sundgren)

1988:4 Development of Systems Design for National Household
(gul) Surveys - Report from a short-term mission to Harare,

Zimbabwe, 12th-28th January, 1988 (Birgitta Lagerlof)

1988:5 Ndgra r&d och synpunkter for rationalisering av
(gron) produktionsmomentet granskning (Leopold Granquist)
1988:6 Hur mdta energianvd@ndningen och dess utveckling
(grdn) - ndgra alternativa berdkningar (Urban Aspén)
1988:7 Bortfallsbarometer nr 3 (Peter Lundquist)

(gron)

1988:8 Generalized Linear Modeling of Sample Survey Data
(grdn) (Lennart Nordberq)

1988:9 Abstracts II - Sammanfattningar av metodrapporter
(beige) frdn SCB

1988:10 The Weighted Residual Technique for Estimating the
(groén) Variance of the General Regression Estimator

(Carl-Erik S&rndal, Bengt Swensson and Jan H. Wretman)

Kvarvarande BEIGE och GRONA exemplar av ovanstdende promemorior kan
rekvireras fran Elisabet K1ingberg, U/STM, SCB, 115 81 Stockholm, eller
per telefon 08-7834178.

Dito GULA exemplar kan rekvireras fran Ingvar Andersson, U/ADB, SCB,
115 81 Stockholm, eller per telefon 08-7834147.



	R & D Report 1988:10. The weighted residual technique for estimating the variance of the general regression estimator
	Inledning
	R & D Report 1988:10. The weighted residual technique for estimating the variance of the general regression estimator
	Summary
	1. Introduction
	2. The general regression estimator
	3. The implied weights
	4. The suggested variance estimator and its design-based properties
	5. Properties under the model of the proposed variance estimator
	References
	Publikationslista




