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Summary. Despite the advancement of computer-intensive methods for 

variance est imation for complex survey si tuat ions, closed form variance 

est imators w i l l always have strong appeal. In this paper we construct a 

simple yet general method for est imat ing the variance of the general 

regression estimator. The method cal ls for weighting of the regression 

residuals when the variance est imator is calculated by the wel l -known 

Horwitz-Thompson formula. The weights are obtained in a simple way 

from the general regression est imator formula. A strong point in favour of 

the proposed technique is that i t can be defended from design-based 

c r i te r ia as wel l as from model-based c r i te r ia , and that i t works wel l for 

certain kinds of condit ional inference. I l lust rat ive examples of the 

technique are given, including consequences for the important practice of 

pos ts t ra t i f i ca t ion . 

1. Introduction. 

There is a considerable l i terature on variance est imat ion for survey 

est imates; a thorough account is given in the recent book by Wolter ( 1 985). 

Some recent methods, such as the boot-st rap, are computer intensive. Even 

i f re-sampl ing is not involved, the calculat ion of a variance est imator is 

often heavy. Simple, closed form variance est imators, such as the one 
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examined in this paper, w i l l always have strong appeal. 

In survey sampling, the recent emphasis on linear stat ist ical modeling 

has stimulated progress in the model-based approach to inference in 

surveys, as well as in the design-based (randomization theory) approach. 

Holt and Smith (1979), Royall and Cumberland (1978, 1981a, 1981b) and 

other advocates of the model-based point of view have made important 

remarks on variance estimation, some of which put the finger on 

weaknesses in the traditional techniques of variance estimation. Even for 

widely used estimators, such as the classical ratio estimator and the 

classical simple regression estimator, the issue of variance estimation 

has not been finally resolved. Studies by Wu (1982), Wu and Deng (1983), 

Deng and Wu (1987) show that i t is hard to single out a "best" variance 

estimator; bestness depends on the performance criterion in use. 

This paper examines a general technique for estimating the variance of 

the general regression estimator, which is used to estimate a f inite 

population total or mean in the presence of auxiliary information, 

univariate or multivariate. The spir i t of the paper is to point to 

agreement between design-based and model-based approaches. In 

particular, the work was motivated by the question: how does one 

construct a variance estimator for the general regression estimator that 

combines simplicity wi th generality and that has favourable properties 

under the sampling design as well as under an assumed regression model? 

In this paper we develop and analyze a variance estimation technique that 

meets these objectives. A different technique with roughly the same 

objectives was proposed by Kott (1987); see Section 5. 
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Let U = {1 , . . . , k, ..., N} be a f inite population, and let yk be the value of 

the study variable y for the k:th population unit. We seek to estimate the 

population total t = y ̂  + ... + yN . For any given set A of population units 

(A Ç U), we shall wr i te 2 A yk for 2 k € A yk , for example, t = 2y yk . 

The following example il lustrates that uncritical use of the traditional 

approach to variance estimation may be controversial, but that the 

problem may be resolved by the approach of this paper: 

Example 1.1: A simple random sample of size n is drawn from U, and 

then poststratif ied. The usual estimator of the population total t is 

(1.1) 

where "y"Sn = 2S n y^/^h is the mean of the in the sample sn composed of 

those nh units that happen to fall in the h:th group (poststratum), Nn is 

the known size of the population group Un, and N = N j+ . . . + NH ; n = 

n 1 + - + n H - Standard sampling texts (for example, Cochran (1977), p. 

135) give the (unconditional) variance of (1.1), to f i rs t order 

approximation, as 

(1.2) 

The standard technique for building a variance 

estimator is to use the variance as a starting point. Thus, replacing Syn
2 

in (1.2) by i ts sample analogue 
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(1.3) 

whose average value (over repeated simple random samples w i th n h > 2) 

equals (1.2), so the est imator is "correct" in design-based thinking, and 

many sampling s ta t is t i c ians w i l l be sat is f ied w i th (1.3). However, others 

would argue, as do Holt and Smith(1979), that inference should be made 

condit ional ly on the real ized sample conf igurat ion n = ( n ^ ..., nh, ... , nH)' . 

If such an outlook is adopted, one reason fo r d issat is fact ion w i th (1.3) is 

that the contr ibut ion to V u ( 0 from group h equals S S n
2 t imes a weight 

that is insensit ive to nh , namely, N 2 Wn(1 - f ) / n . The s ta t i s t i c ian 

favouring the conditional outlook would argue: Suppose the h:th group 

happened to produce unusually few observations, so that the realized nh 

fa l l s considerably short of i t s expectat ion, E(nh) = n Wn . The natural 

inc l inat ion then is to want a greater than average contr ibut ion to the 

variance est imator f rom the underrepresented poststratum. Now, (1.3) 

fa i ls to achieve th is , whereas an est imator such as 

(1.4) 

meets the objective. In (1.4), which is the variance est imator obtained by 

the technique in this paper (see Example 4.1 below), the poststratum 

sample variance S$n carr ies the weight (1 - f) N n
2 / n h , whose tendency 

to drop w i t h an increase in nn makes good sense from the conditional 

point of view. Furthermore, in using (1.4) the advocate of design-based 

inference gives up none of Jiis. pr inciples, since ( 1.4) is as correct as ( 1.3) 

in the sense that both have an average, over repeated simple random 
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samples, that is (at least approximately) equal to (1.2). We advocate (1.4) 

over (1.3) and make the point that randomization theory is f lexible enough 

to accomodate the condit ional point of view. • 

2. The general regression estimator. 

A probabi l i ty sample, s, is drawn f rom U w i th a sampling design having 

the inclusion probabi l i t ies TTk = Pr(k € s) and T T ^ = Pr(k and i € s) . 

Note that T7kk = 77k fo r al l k. The size of s , ns , is permit ted to be 

random. We examine the design-based s ta t i s t i ca l propert ies of est imators 

of t . That is , design expectation, design bias and design variance become 

important quanti t ies to consider. The design must often be chosen more 

for reasons of pract ical and administ rat ive necessity than to yield the 

highest possible precision of the resul t ing estimates. Unequal inclusion 

probabi l i ty designs are extremely common. In design-based analysis, the 

sampling weights 1 /Trk are required, as in the approximately design 

unbiased general regression est imator of t , 

(2.1) 

where B is a q-vector of estimated regression coef f ic ients , and Zy x k 

is the known tota l of the auxi l iary q-vectors X j , ... , x N . Estimators of 

th is fo rm were discussed by Cassel, Särndal and Wretman (1976, 1977), 

Sarndal (1980, 1981, 1982), Isaki and Ful ler (1982), Wright (1983), and 

others, but prior to these attempts at uni f ied presentation, various special 

cases of (2.1) were in widespread use, for example, (1.1), (3.3) and (3.4). 

Now, (2.1) appeals to an underlying regression 

(2.2) 
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about which the only assumption is that y is wel l explained by the vector 

x, so that the average (e r ro r ) 2 is smal l . (We do not assume (2.2) to be the 

"true (superpopulation) model" that generated the population values y , , ... , 

yk , ... , UM .) A l ternat ive ly , we can w r i t e (2.1) as 

(2.3) 

where 

is the predicted value for the k:th uni t , obtained from the regression f i t 

described below, and the corresponding regression residual is 

(2.4) 

Di f ferent suggestions are found in the l i terature on regression est imat ion 

as to the weight ing of the observations when B is calculated in (2.1), 

but the weight ing is not of s igni f icant consequence for the large sample 

ef f ic iency of t ; see Särndal (1980), Wright (1983). 

Our def in i t ion of B springs from wanting to see B as the ordinary 

TT-weighted est imator of the unknown f i n i t e population regression vector 

(2.5) 

Clearly, B represents the result of a hypothetical weighted least squares 

regression f i t of (2.2) to the whole f i n i t e population (a "census f i t " ) , 

where the data point (y k , x k ) carries the weight 1/ck , which is unrelated 

to the sampling weight 1 / T ^ . Part icu lar ly simple and often used is the 

uniform weight ing 1/ck = 1 for al l k. The choice of 1/ck is discussed 

below. In the design-based approach, an obvious est imator of B is the 
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sample weighted analogue 

(2.6) 

Now, B is a function of a number of sample sums of the type 

2s x ik x ik / ' ckT rk a n d 2s ^k^k^k^k' w n e r e x ik is the value of xi for the 

k:th unit. Each of these sample sums is design unbiased and, under 

appropriate conditions on moments up to fourth order and on the inclusion 

probabilities, design consistent for i ts population counterpart. For 

example, 2S
 xikxj|</c|<Trk is d e s i 9 n consistent for 2^ Xjjcxik/'ck • it 

follows that Ê is design consistent for B . The conditions, given, for 

example, in Isaki and Fuller (1982), w i l l be referred to as the regularity 

conditions. In the rest of the paper we assume that (2.6) is the 

expression for Ê in the estimator (2.3). 

The weighting 1/ck w i l l be chosen here to achieve simplicity of form 

and to eliminate the possibility that the estimator (2.3) be unduly 

influenced by the simultaneous occurrence, for one or several units k, of 

a large residual ek s and a large sampling weight 1/TTk . We can, in fact, 

achieve that I s eks/77k = O for all s by restricting the weights 1/ck to 

within a certain class of weights. As is easily verified, (2.3) reduces to 

"the simple projection estimator" (Särndal and Wright (1984)), 

(2.7) 

if the ck in (2.6) are taken as 

(2.8) 

for any q-vector X independent of k and such that ck > O for all k. 
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That i s , the simple form (2.7) obtains i f ck is any convenient posi t ive 

l inear combination of the available x-var iable values. For a simple 

example, supposing that x k contains the constant one, then ck = 1 for 

all k is one choice that yields the simple form (2.7). 

An al ternat ive object ive for the weights 1/ck i s , obviously, to t ry to 

choose them so as to minimize the variance of t under the given design. 

However, one can not hope to f ind a set of weights 1/ck that is best, 

uni formly for all populations y | , . . . , y^. Moreover, even i f weights 1/ck 

may be found that give reduced variance for some populations, the gain in 

design-based ef f ic iency (compared to a "convenient" set of weights) would 

at best be modest. To select the strongest possible auxi l iary variables x̂  

is a more important preoccupation in design-based thinking than to seek 

"optimum" weights 1/ck . The pract ical approach is to use weights that 

sat is fy (2.8) and give the simple form (2.7); such a weight ing is assumed 

from now on. 

3. The impl ied weights 

The est imator (2.7) can be expressed as a l inear combination of the 

ir-expanded y-values y k / r t k : 

(3.1) 

namely, i f we define, fo r k e s , 

(3.2) 

called the g-weight of unit k, where ck is of the form (2.8). The 
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g-weights are sample dependent and impl ied by the equivalence of (2.7) 

and (3.1). They are somewhat akin to the elements of the "hat matr ix" in 

regression diagnostics, see Hoaglin and Welsch(1978). 

Example 3.1. The rat io est imator arises from (2.1) i f x k = xk , a 

scalar, and ck a xk: 

(3.3) 

Here, the g-weight is the same for al l k in a given s, namely, 

Example 3.2. The simple regression est imator is obtained from (2.7) i f 

xk = ( 1 , x k ) ' , and ck = c, a constant, for al l k: 

(3.4) 

From (3.4), we ident i fy the g-weight of unit k as 

(3.5) 

which depends on k as we l l as on s. D 

We now show three properties of the g-weights that w i l l be used later: 

Property 1. The g-weights yield "perfect est imates" when applied to 

the xk -va lues: 

(3.6) 
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Property 2. For m = 1 and 2, end for any fixed s, 

(3.7) 

where ck is of the form (2.8). 

Property 3. For each fixed k, g k s can be viewed as a random variable, 

the random element being s, whose distribution is determined by the 

design, and for each k, g k s converges in design probability to unity, 

under the regularity conditions: Letting 

we have that the qxq identity matrix, and so 

where —Ë—> denotes convergence in design probability, and we have 

used (2.8). In large samples, g k s may thus be approximated by unity. 

4. The suggested variance estimator and i ts design-based properties. 

The primary objective in this paper is to improve current practice for 

estimating the variance of (3.1). Our requirements for a variance 

estimator V(t) include all of the following: 

(a) good properties wi th respect to the sampling design that dictates 

the sample selection; 

(b) good properties wi th respect to an assumed regression model; 

(c) simplici ty of form and applicability in general, that is, for any 

design and any linear regression model. 

In addition, i t is a bonus if the variance estimator possesses 

(d) sensible properties under a conditional inference outlook. 
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With respect to the design, a requirement on V ( 0 is that i t lead to an 

approximate 100(1-oc)8 confidence level for t , calculated as 

where the constant Z i _ K / 2 is exceeded w i t h probabi l i ty a /2 by the 

unit normal variate. We therefore require that V(t) be design consistent 

for V( t ) . However, many est imators have this property, so the choice is 

s t i l l wide. We look to an assumed model model for guidance in l im i t i ng the 

choice: In addit ion, our variance est imator should have a zero or very 

l im i ted bias w i th respect to a formulated model for the yk-values. This 

aspect is discussed in Section 5. (Opt imal i ty w i th respect to both model 

and design seems a remote hope for a variance estimator. Compromise is 

thus unavoidable.) 

To motivate the variance est imator to be proposed, denote by Ek the 

"census f i t residual": 

(4.1) 

where B is the population regression vector (2.5). In view of (2.8), Zy Ek 

= 0. Using also (3.6), we can express the error of (3.1) as 

(4.2) 

The approximate variance of (3.1) is commonly given in the l i terature as 

(4.3) 

where A k i = Tlk£ - n^n^ , Ek = Ek/:rtk . Note that (4.3) can be obtained 

by approximating g k s by unity for al l k in (4.2), a step jus t i f i ed in large 
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samples by Property 3 of the preceding section. The c lassical technique 

for turning (4.3) into a variance est imator is to replace the unknown Ek 

by i t s sample-based counterpart e k s , which leads to 

(4.4) 

22 s is shorthand for Z k € S 2 ^ € s . The est imator (4.4) was considered in 

early work on the general regression est imator , for example, Särndal 

(1981 , 1982), Särndal and Råbäck (1983). The Yates-Grundy version of 

(4.4), which applies i f the design is of f ixed size, is 

(4.5) 

Kott (1987) gave condit ions under which (4.5) is design consistent for 

(4.3). 

Now, (4.4) and (4.5) are not ideal when the model considerations ere 

added (see Examples 4.1 to 4.3 below). We seek improvement in this regard 

by the fo l low ing simple modi f icat ion of (4.4). 

The weighted residual variance est imator. Modify (4.4) by attaching 

the g-weight g k s to the residual e k s : 

(4.6) 

The method was proposed in Särndal (1982). A Yates-Grundy version of 

(4.6) may also be considered, for the case when s is of f ixed size. 

Our f i r s t important conclusion is that when (4.4) is design consistent, 

so is (4.6), under the regular i ty condit ions. This fo l lows d i rect ly from 

Property 3 in the preceding section: Since g k s converges in design 
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probabi l i ty to unity fo r al l k, the g-weight ing of the residuals w i l l not 

upset the design consistency. That i s , f rom the design-based point of view, 

(4.4) and (4.6) are equally correct, and the g-weight ing is a seemingly 

t r i v i a l step. However, f rom the model-based point of v iew the 

improvement is substant ia l , as Section 5 w i l l show. Empirical work (not 

reported here) has shown that (4.6) works wel l for conficence intervals, 

even for modest sample sizes. Before proceeding, we show by some 

examples how g-weight ing af fects the variance est imator formula. 

Example 4.1. With notat ion as in Example 1.1, the "general design" 

pos ts t ra t i f i ed est imator is 

(4.7) 

w i t h yS n = (2 S n y k /7T k ) /N n , where Nh = 2 S n 1/rtk. This est imator 

derives f rom (2.7) i f x k is taken as an H-vector composed of H-1 entr ies 

zero and a single entry "one" indicating the population group to which k 

belongs, and ck = Cn, a constant, for al l units k in the h:th group. The 

g-weights needed for (4.6) are in th is case g k s = N h /N n for all k € s h . 

Consider in par t icu lar simple random sampling (n units drawn from N; 

f = n/N), and let An = { n n - 1 ) / n n M n / ( n - 1 )}, where n h is the (random) 

size of s n . Then we get f rom (4.6) 

(4.8) 
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est imator is excellent f rom the condit ional point of v iew, as already 

discussed in Example 1.1. By contrast, (4.4) gives a variance est imator 

in which the weight attached to S S n
2 is proportional to nn , instead of 

proport ional to n n
_ 1 as is the case in (4.8). That is , i f (4.4) is used, the 

variance contr ibut ion f rom the h:th group w i l l increase, not decrease, as 

one would l ike, when the group's share of the sample gets larger. • 

Example 4.2. For the Bernoulli sampling design, the inclusion or 

non-inclusion in the sample s of a uni t k is determined by a Bernoulli 

experiment: rtk = Pr(k € s) = TT; Pr(k i s) = 1 - fl for al l k, the 

experiments being independent. If we take x k = 1, and 1/c^ = 1 for al l 

k, formula (2.7) leads to the expanded sample mean est imator 

C = N Z s y k / n s , 

so g k s = N i r /n s , where the (random) sample size ns is binomial ly 

(4.9) 

The fac to r N 2 (1 -77) /n s decreases as n s increases, which makes good 

sense, condit ional ly speaking. By contrast , (4.4) leads in th is case to 

(4.10) 

where E(ns) = Nfl. Here, the factor n s -1 in the numerator is unfortunate. 

"Tradit ional reasoning" may a l ternat ive ly lead to the variance est imator 
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(4.11) 

which is also inappropriate, since independent of ns . A l l of (4.9) to 

(4.11) are design consistent, but only (4.9) has def in i te appeal, 

condi t ional ly on ns. • 

Example 4.3. We return to the classical rat io est imator (3.3) seen in 

Example 3.1. The weighted residual variance est imator (4.6) becomes 

For simple random sampling, le t t ing 

we get 

(4.12) 

a variance est imator that has received much attent ion in recent l i te ra ture 

on the rat io est imator, for example, in Wu (1982), Wu and Deng (1983). 

Royal 1 and Cumberland (1981a) use an est imator that is only s l ight ly 

d i f ferent . As a resul t , (4.12) is now generally considered superior to the 

••tradit ional" formula (Cochran (1977), p.155) 

Example 4.4. The g-weights that apply for the simple regression 

es t imator (3.4) are given by (3.5). In the special case of simple random 

sampling, the g-weighted variance est imator (4.6) becomes simply 
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This result agrees 

in essence w i t h (but has simpler s t ructure than) the variance est imators 

suggested by Royall and Cumberland (1978, 1981b) in the i r work on robust 

variance est imat ion in the model-based context. • 

5. Propert ies under the model of the proposed variance est imator 

We now examine the properties of the variance est imator (4.6) by 

assuming for y1 , ... , yN a regression model, denoted f and given by 

where the £k are independent under the model, and such that 

(5.1) 

for some choice of X. We let E, and V^ be the mean and variance 

operators, respect ively, w i t h respect to the model. In the image of (4.6), 

we consider 

(5.2) 

unobservable model errors, V is obviously not a variance est imator, but 

serves as a tool for the argument. The "real" est imator, VQ given by (4.6), 

is the "sample copy" of V , obtained by subst i tut ing the calculated 

residual e k s = yk - x k 'B for the unobservable ek. We have 
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Under general condit ions, the dif ference V - Vq converges in model 

probabi l i ty to zero. 

A pr incipal concern in the model-based examination, as in Royall and 

Eberhardt (1975), Royall and Cumberland (1978), Kott (1987), is to see 

how we l l a variance est imator succeeds in predicting the model Mean 

Square Error, MSEf(t) = E>{( t - t ) 2 } . For V we obtain the fo l lowing 

important conclusions: 

For any given real ized sample s, 

( i) (5.3) 

( i i ) (5.4) 

( i i i ) the Relative Model Bias (RMB) of V is 

(5.5) 

Here, (5.5) is an immediate consequence of (5.3) and (5.4), the proofs 

of which use that, for m = 1 and 2, 

(5.6) 

which fo l lows from (3.7), i f we note that the model (5.1) assumes that 

Here, use (5.6) w i t h m = 2 to t ransform the negative term on the r ight 

hand side, which gives (5.3). To prove (5.4), use (3.6) to obt8in 
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Now, a s t ra ight forward evaluation of E^{(( - t ) 2 } = MSE^O leads to 

(5.4), by use of (5.6) w i t h m = 1. 

The resul ts (5.3) to (5.5) prompt the fo l lowing comments: 

(1) RMBg(V) is exactly zero for some important si tuat ions. An 

example is the s i tuat ion of Example 4 .1 , where g k s = N n /N n for al l k in 

group h. Now, i f the design is s t ra t i f i ed simple random sampling, w i t h the 

f ixed sampling f ract ion n n / N n = 77k, fo r k in stratum h, then g k s = 1 

for al l k, and thus R M B ^ V ) = O . 

(2) Even i f not exactly zero, RMBf ( V ) is often smal l . The reason is 

that in (5.3) and (5.4) the f i r s t (posi t ive) term on the r ight hand side is 

common to the two expressions; moreover, since i t involves T T ^ - 2 , th is 

term dominates the second (negative) term in both expressions. In 

par t icu lar , for simple random sampling, th is amounts to saying that 

Rr1B, (V) is negligible i f the sampling f ract ion f = n/N is negligible, as 

i l l us t ra ted in Example 5.1 below. 

(3) It is s t ra igh t fo rward , in a case where RMBe(V) is not already 

zero, to adjust V so as to remove i t s model bias. But in practice th is 

hardly "seems worth the e f fo r t , because (a) the numerical impact of the 

bias removal is ordinar i ly smal l , and (b) the bias removal may complicate 

the form of the variance est imator, and (c) the bias removal appeals to a 

model which, however we l l i t f i t s the data, is only an assumption. The 

propert ies of V under the model are suf f ic ient ly good (that is , RMB. (V ) 
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is su f f i c ien t l y close to zero) in order that we should not be concerned 

about the minor model bias. The model is consultat ive, not normative, for 

design-based pract ice. 

The comments are i l lus t ra ted by the fo l lowing example. 

Example 5.1. We reconsider the case of simple random sampling 

(n uni ts f rom N, so that Ttk = n/N = f fo r al l k), and the rat io est imator 

Consider the "rat io model" 

(5.7) 

w i t h independent errors such that 

variance structure sa t is f ies (2.8). Since (5.2) becomes 

(5.8) 

where A calculation 

gives 

where That is , even i f a realized sample is highly 

unbalanced, so that OTy - ^s)/^<u-s d e v i ö t e s substant ial ly from zero, 

Rr1B £ (V) w i l l be near zero i f the sampling fract ion f is small. 

Subst i tut ing e k s = yk - ("y"s/"x"s)xk for sk in (5.8), we get the variance 

est imator (4.12) favoured in recent l i te ra ture . 

To continue the example, let us remove the model bias of V given by 

(5.8). Let <T2 be any model unbiased est imator of a 2 . Then 
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(5.9) 

is unbiased under the model, that is, E ^ V ) = MSEe(t). If in particular we 

choose a 2 = S£S
2/"x"s , the model unbiased estimator (5.9) becomes 

Most practitioners would probably feel indifferent between V and V . 

That is, they would consider rather unimportant whether 0<y/x"s)
2 or 

^ U ^ U - s ^ ^ s ^ 2 b e u s e d a s a m u l t i p l i C ö t i v e factor, but the presence of 

either factor wi l l most likely be seen as important, because i t augments 

the variance estimate when the realized sample happens to be one in which 

"x"s is small compared to ITy. • 

Note f inally that V given by (5.2) is made functional by putting the 

calculated residual e k s = yk - xk'B in the place of ek. This step, which 

gives the weighted residual estimator (4.6), adds a minor model bias. 

Again, a bias removal term can be applied, but from a practical standpoint, 

the incentive to do so is not strong, since for modest to large samples, the 

numerical impact of such a term would be very small. The main objective 

of the model consideration is, as pointed out, to assist in the choice of a 

variance estimator. 

Concluding remark. It is of interest to compare with the method of 

Kott (1987), which yields variance estimators for (2.6) that are (a) 

design consistent and (b) unbiased under an assumed regression model. He 

proposed to multiply the Yates-Grundy formula (4.5) by the "adjustment 

ratio" 
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The result, evidently, is to make the variance estimator 

unbiased for EA(t-i)2} = MSEç(t), under the model £. This interesting 

suggestion leads to a correction factor that is often a rather complex 

expression, even for simple regression models, as shown in the examples 

of Kott(1987). • 
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