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Order πps Inclusion Probabilities Are 
Asymptotically correct 

Bengt Rosén 

ABSTRACT 
A particular class of sampling schemes with inclusion probability proportional to size 
(ftps) was introduced in Rosén (1997), called order rcps schemes. They were derived 
by limit considerations, and as a consequence their 7tps property is slightly 
approximate for finite samples. Rosén (2000 a) showed that the following holds under 
general conditions for three particular order Ttps scheme of special practical interest, 
Pareto, uniform and exponential order Trps. 

With A-IC(H) and 7tk(«) for desired respectively factual inclusion probabilities for 
population unit k when the sample size is n ; 

7Ck(")/^k(") -» 1 , uniformly over k as n -»<=°. 

This entails that the schemes have asymptotically correct ( = desired) inclusion prob
abilities. Here is shown that, as conjectured in Rosén (2000 a), the result holds not 
only for the mentioned particular schemes, but for order rcps schemes very generally. 
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Order πps Inclusion Probabilities Are 
Asymptotically Correct 

1 Introduction and outline 
A probability sample without replacement is to be drawn from the population U = (1,2,... ,N), 
using a sampling frame which one - to - one corresponds with the units in U. Moreover, the 
frame is presumed to contain values of a size variable, s = (si, S2,..., SN), Sk> 0. As is well 
known, if the size variable is fairly proportional to the (chief) study variable, estimation preci
sion benefits from using a 7q>s scheme, i.e. a sampling scheme with sample inclusion prob
abilities Ki, 7t2,..., TIN such that; 

Ttk is proportional to Sk, k =1,2,...,N. (1.1) 
It is generally desirable that sampling schemes have predermined/fixed sample size. Accord
ingly, in the following we confine to Tips schemes with fixed sample size n. Then, under (1.1) 
the desired inclusion probabilities X\, X2,., XN are; 

(1.2) 

This formula may yield X: s which exceed 1, which is incompatible with being probabilities. If 
so, some adjustment has to be made, usually by introducing a "take for certain" stratum. In the 
sequel is presumed that adjustment already is made, so that Åk < 1 holds for k = 1,2,..., N. 

A "perfect" 7tps scheme satisfies (1.1) with 7tk and X.k being exactly equal for all k. In the fol
lowing we are a bit more "generous". A sampling scheme which satisfies (1.3) below is ac
cepted as a ixps scheme (in wide sense); 

7tk~?tk holds with goodapproximation for k = 1, 2,...,N. (1.3) 

The literature offers a multitude of ftps schemes, among these the so called order itps schemes 
introduced in Rosén (1997). Such a scheme is specified by parameters (N, s, H,n), referred to 
as an (order 7tps) sampling situation, with the following interpretation. N is the population 
size, s = (si, S2,..., SN) are size values, H(t) is the probability distribution function for a distri
bution on [0, t») with density, and n is a predetermined sample size. The definition of an order 
Ttps scheme is stated below. 

DEFINITION 1.1: An order πps sample from U = (1,2,... ,N), with size values 
s = (si, s2 , . . . , SN) , shape distribution H(t) and sample size n is drawn as follows. 
Step 1 : Compute desired inclusion probabilities X = (k\, A.2,..., Å-N) by (1.2). 

Step 2 : Realize independent random variables Ri, R2,..., RN with uniform distri 
butions on [0,1], and compute ranking variables Q as follows, where 
H"1 stands for inverse function; 

(1.4) 

Step 3 : Finally, the sample consists of the units with the n smallest Q- values. 

It is by no means obvious that order rcps schemes have the (wide sense) 7tps property (1.3), as 
indicated by their name. The chief aim in this paper is to prove that this in fact is true. More 
specifically we prove that (1.5) below holds under very general conditions. In (1.5), and hence
forth, notations like 7tk(n) and X.k(n) indicate dependence on the sample size n. 

(1.5) 
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Rosén (2000 a) showed that (1.5) holds for the three order Tips schemes of greatest practical 
interest, which are specified by their shape distributions in (1.6) - (1.8) below. There the nam
ing rule is that an order 7tps scheme is christened by the name of its shape distributions. 

Uniform order πps : 
Exponential order πps : 
Pareto (order) πps: 

Uniform order 7ips was introduced by Ohlsson (1990, 1998), who calls it sequential Poisson 
sampling. The author and P. Saavedra (1995) independently came across Pareto order Trps. 
Saavedra calls it odds ratio sequential Poisson sampling. A "user's guide" for Pareto 7rps is 
presented in Rosén (2000 b). Aires (1999), Aires & Rosén (2000) and Rosén (2000 a) present 
findings from numerical investigations, which show that in particular for Pareto Tips the 
approximation (1.3) works very accurately already for quite small sample sizes. 

The concern in this paper is, however, not the small sample behavior of order Ttps inclusion 
probabilities but their large sample behavior for general shape distributions, not only for those 
in (1.6) - (1.8). As already stated, the chief result is that (1.5) holds for a very wide class of 
shape distributions. 

Thereby we are addressing a result with simple formulation and general scope. We see it as a 
challenge that such a result ought to have a simple proof. This cannot be said about the proof 
in Rosén (2000 a), although it was confined to the three particular schemes. Even if proof ideas 
in this paper basically are the same as as in Rosén (2000 a), a considerably simpler proof a for 
a considerably more general result is presented. Matters are better understand by now, and we 
feel a bit embarrassed for earlier "clumsiness". We leave to the reader the challenge that the 
proof maybe can be even further simplifieid. 

Throughout the paper P and E have their usual probability theory meanings, probability and 
expectated value. Moreover, log stands for natural logarithm and e = 2.718... 

2 The chief result 
In the subsequent limit considerations we work in the usual framework for finite population 
asymptotics: A sequence of populations \Jq with sizes Nq, <? = 1,2,3,.., such that; 

Nq-»°°, as#->oo. (2.1) 

An index q signifies that the quantity relates to the sample from the q: th population. In parti
cular, an order Ttps sampling situation is specified by parameters (Nq, s(q), H, riq). Note that the 
shape distribution H is presumed to be the same in all situations. However, from now on we 
take a more general approach. Instead of viewing sizes s = (si, S2,..., SN) as primary parameters, 
that role is given to desired inclusion probabilities X - (Xu X2,., X^). They are presumed to be 
apriori specified, and their values may emanate from (1.2) or from somewhere else. As is well 
known, for a sampling scheme with fixed sample size, the inclusion probabilities add up to the 
sample size n. Accordingly, X is presumed to satisfy; 

0<Ak<1,k=1,2, . . . ,N, and Xx + X2 +... + A,N = n. (2.2) 

Hence, the q:th sampling situation is specified by parameters (Nq, X,(q), H, n<,), and the sampling 
scheme is defined by Steps 2 and 3 in Definition 1.1. Although size values no longer are 
explicitly involved, we continue to call the schemes "order 7tps schemes", even if schemes 
with varying inclusion probabilities would be more adequate. As before, KI,K2 ,... ,TtN denote 
the true inclusion probabilities, in contrast to the desired ones, X\,X2,..., X^. The task is to 
show that the approximation n^-X^. under very general conditions works as stated in (1.5). 
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Some conditions on the parameters (Nq, A(q),H,nq) must be imposed, though, and such condi
tions are introduced next. 

The shape distribution H is a probability distribution on [0,°°) with density, denoted by h(t). 

The support interval [0, Tu) for H is defined by: Xv- sup {t: H(t) < 1}. (2.3) 

The density h(t) is continuous and strictly positive on [0,Tu)• (2.4) 

Theorem 2.1 below concerns situations where the regularity condition (2.4) is met. It covers all 
order 7tps schemes which, as we understand it, may be considered for practical use, in particu
lar those in (1.6) - (1.8). From a theoretical point of view, though, it is of interest to find out 
under how general conditions on H that (1.5) holds. Section 4 discusses ramifications of Theo
rem 2.1, i.a. some weakenings of the assumption (2.4). 

Under (2.4) H(t) increases strictly and continuously on [0,Tu), from 0 to 1. Hence, the inverse 
function W\X\0<X< 1, can be, and is, defined in the simple and natural way: H ~X{X) = the 
(unique) / for which H(t)=A. Boundary values for H"' are set to H "'(0) = 0, resp. H -1(1) = Tu. 

Next some notation relating to the desired inclusion probabilities; 

(2.5) 

We are now prepared to formulate the chief result. 

THEOREM 2.1: A sequence (Nq, A(q), H, nq), q - 1,2,3,..., of order ftps sampling 
situations is considered. The shape distribution H is presumed to satisfy (2.4). Then 
the following holds if conditions (i) - (iii) below are met; 

(2.6) 

Conditions: 

(2.7) 

(2.8) 

(2.9) 

Remark: Condition (2.9) says that no A-value is allowed to be 'extremely small. Since (2.6) con
cerns the relative error in the approximation-flk. = Äj<, a condition of this type is not surprising. We do 
not know, though, if (2.9) is a "precisely right" condition. n 

The corollary below presents a version of the above result for the "traditional" Jtps situation, 
i.e. in terms of conditions on size values. In analogy with (2.5) we set; 

(2.10) 

COROLLARY 2.1: A sequence (Nq, s(q), H, riq), q = 1,2,3,..., of "ordinary" order ftps 
situations is considered. X: s are defined by (1.2), and H is presumed to fulfill (2.4). 
Then, (2.6) holds if (2.7), (2.8) and the following condition are met; 

(2.11) 

(2.12) 

Justification of the corollary: From (2.2) follows generally that X(^ > nq/Nq. When the X:s 

are determined by (1.2) we have X(^ = A(^ • ( s ^ / s ^ ) . These two relations readily yield that 

(2.7) and (2.12) imply (2.9). n 

3 



3 Proof of Theorem 2.1 
Until further notice we forget about the sequence setting and omit the index q. In particular, 
the parameters which specify the sampling situation are denoted by (N, A,, H, n). 

3.1 A heuristic argument 
To give background for the stringent proof we present a heuristic reasoning which sheds light 
on the approximation 7ik ~ Xk. By (1.4) and the fact that the Rk are uniform on [0,1]; 

(3.1) 

Hence, Qk takes its value in the interval [0,1] with probability Xk. This readily yields; 

The expected number of Q: s with values in [0,1] is (3.2) 

Unit k is sampled if and only if Qk takes its value among the n smallest Q: s. In view of (3.2) 
this holds roughly iff Qk takes its value in the interval [0,1], which by (3.1) has probability Xk. 
Hence, the inclusion probability 7tk can be expected to lie close to Xk, i.e. the approximation 
7tk = Xk can be expected to work well. This argumentation is a bit too loose, though, to be a 
proof, but it provides a basis for a stringent proof. 

3.2 Main steps in the proof 
Start of the proof of Theorem 2.1 : The interest concerns the probability 7Ck that population 
unit k is sampled. For notational simplicity we choose, without loss of generality, k to be N 
and, thus, consider 7tN . Since the Q - variables have continuous distributions we need not 
bother about ties in the definition of the order statistic Z(n) below. 

Z(n) = the n: th smallest among Qi, Q2,..., QN-I • (3.3) 

The fact that unit N is sampled if and only if QN< Z(n) implies the relation (3.4), where FZ(n)(z) 
denotes the distribution of Z(n). The right-most equality is justified as follows. Since Z(n) is a 
function of Qi, Q2, . . . , QN-I , which are presumed to be independent of QN , Z(n) and QN are 
independent, which yields P(QN ^ z |Z(n) = z) = P(QN^ Z) . 

(3.4) 

For notational convenience we introduce the following shifted version of Z(n); 

(3.5) 

Then (3.4) may be written; 

(3.6) 

By splitting the domain of integration in (3.6) into {|u| < z} and {|u| >z} and by using the tri
vial estimate |P(QN ^ 1 +u) - X,N| ^ 1 we get, for any z > 0; 

(3.7) 

In the first round we want to exhibit the broad lines in the proof. For that reason we employ 
the contents in the following two lemmas straight away, while their proofs are deferred until 
next section. For fruitful use of (3.7) we need results about P(Qk <1 + u) as function of u and 
about the tails in the distribution of Z(n)*. First we introduce some notation. 

Lower and upper bound functions, m(t; f) and M(t; f), for a function f(t) on [ 0, x) are defined 
and denoted as follows. Note that m(t; f) decreases and M(t; f) increases as t increases. 

(3.8) 
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Set, where h as usual denotes the density of H; 

(3.9) 

LEMMA 3.1: With notation according to (3.9) the following holds under (2.4); 

(3.10) 
with 

(3.11) 

LEMMA 3.2: With notation according to (3.5), (3.8) and (3.9) we have under (2.4); 

(3.12) 

provided that the following condition is met; 

(3.13) 

Continuation of the proof of Theorem 2.1: We now return to the sequence situation in Theo
rem 2.1, and pursue (3.7) in that setting. Then ^max, tmax, u*, 8 and p depend on q. However, 
as is readily realized, under (2.4) and (2.8) these quantities are uniformly bounded to the effect 
that there exist values A âx, Vax, u*, 5 and p such that; 

(3.14) 
A consequence of (3.14) and (2.7) is that u* can be, and is presumed to be, chosen so that for 
some qo < °° (3.13) holds for q > q0. Moreover, z is presumed to satisfy; 

(3.15) 

Then Lemmas 3.1 and 3.2 can be employed. By using (3.10) and (3.11) in the integral in (3.7); 

(3.16) 

By (3.12); 

(3.17) 

A straightforward consequence of (3.17) and (2.7) is; 

Zq(n)* converges in probability to 0, as q -» °°. (3.18) 

From (3.18) follows that the integral in (3.16) tends to 0 as q —> °°. Moreover, from (3.17) and 
(2.9) follows readily that P(Zq(nq)* > z)/^Nq -> 0 as q -> °°. 

Thereby the convergence (2.6) is established for population unit Nq. However, Nq can be seen 
as an arbitrary unit in Uq, and the bounds used in the proof hold uniformly over the population 
(as well as over q). Hence, Theorem 2.1 is proved but for Lemmas 3.1 and 3.2. a 

3.3 Proofs of Lemmas 3.1 and 3.2 
3.3.1 Proof of Lemma 3.1 
By (1.4) and the fact that Rk is uniformly distributed on [0,1]; 

(3.19) 

We shall use the Taylor expansion f(x+A) = f(x) + A • f '(£), for some £ between x and x+A. 
By (2.4), H is differentiable on [0,Tu) with continuous derivative H'(t)=h(t). Hence, provided 

5 



that H ~'(A,k) + u • H "'(A,k) e [O, tu), which is readily checked to hold for -1 < u < u*, Taylor 
expansion of the last term in (3.19), with x = H" 1 ^ ) and A = u- H_1(?ik), leads to (3.20) below. 
Note that H(H"1(A,k)) = Xk. 

(3.20) 

where 
(3.21) 

From (3.21) follows readily, with m and M according to (3.8); 

(3.22) 

By combining (3.20) and (3.21) with the estimate (3.23) below, Lemma 3.1 follows. 

With m, M and Tmax as in (3.8) and (3.9): 

(3.23) 

To prove (3.23) we use the representation which readily yields; 

(3.24) 

Inversion of (3.24) yields (3.23). 

3.3.2 Proof of Lemma 3.2 
The task is to derive an estimate of P( | Z(n)*| > z). We have; 

(3.25) 

In the random variables introduced below, 1(A) denotes the indicator of the event A. Since the 
Qk are presumed to be positive we confine to the domain -1 < u < °°. 

(3.26) 

(3.27) 

It is readily checked that the following relations hold; 

(3.28) 

From (3.27) is seen that information about the tails of the distribution of Z(n) can be obtained 
via information about the distribution of S(u), which is a sum of independent Bernoulli vari
ables. We insert a general result about such sums. 

LEMMA 3.3: Let S = Xi+X2+... + X R be a sum of independent Bernoulli variables 
withP(Xk=l) = pk,k= 1,2,...,R. Set; 

(3.29) 

Then, provided that a > 1, the following holds; 

(3.30) 

Alternative forms of the estimate in (3.30) are stated below. 

Justification: The estimate (3.30) is derived as Lemma 2.2 in Rosén (2000 a). The left hand 
part in (3.31) is a straightforward modification of (3.30). The right part is obtained e.g. from 
the left part with b exchanged for R - b and variables X \ = 1 - Xk, k = 1,2,, R, which also are 
Bernoulli variables, withS' = R-S, ILL = R-u.anda' = o. Hence Lemma 3.3 is justified. n 
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Continuation of the proof of Lemma 3.2 : The relations in (3.28) in combination with the 
bounds in (3.31) with b = n yield the following estimates, for î(u) and o(u) in accordance with 
(3.29), provided that o(u) > 1; 

(3.32) 

(3.33) 

To continue we need expressions for ji(u) and <r(u) according to (3.29). Here R = N-1 and; 

(3.34) 

Hence; 

(3.35) 

(3.36) 

By (3.11) and (2.2) we get from (3.35) when 0 < u < u* and n > 2; 

(3.37) 

Analogously for u < 0 and n > 2; 

(3.38) 

Next we consider cr^u), and start with an upper bound. By (3.36), the estimate -1 < 1 -2 • A,k < 1, 
£=1,2,... ,N, (3.11) and (2.2) we have; 

(3.39) 

By employing the estimates (3.37) - (3.39) in (3.32) and (3.33) it is seen that P(Z(n) < 1 -z) and 

P(Z(n) > 1+ z) for z > 0 both are dominated by 2.1-exp{-1 z|• Vn• 8/(2-^l + z-p}. This to

gether with (3.25) yields (3.12). 

However, we are not entirely through yet. Lemma 3.3 contains the premise a(u)> 1, and it re
mains to formulate conditions for that to be fulfilled. Again we start from (3.36). The estim
ates 1->ik>l-?tmax,-l<l-2-Xk<l, and X,k-(l-^k)< 1/4, Ä:=1,2,...,N, and (3.11) yield; 

(3.40) 

From (3.40) is seen that (3.13) implies that a(u) > 1. Thereby the lemma is proved. n 
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4 Ramifications of Theorem 2.1 
4.1 On the rate of convergence in (2.6) 
The estimates used in the proof of Theorem 2.1 allow derivation of bounds for the rate of con
vergence in (2.6). Below we present a sharpened version of Theorem 2.1. 

THEOREM 4.1: With notation and assumptions as in Theorem 2.1; 

(4.1) 

Proof: We start from (3.16), and shall use the following general formula (which is readily 
shown by partial integration) for any non-negative random variable X with density; 

(4.2) 

By employing (4.2), the integral in (3.16) can be transformed as follows; 

(4.3) 

Combination of (3.16), (4.3) and (3.17) yields; 

(4.4) 

Next we employ the following two general estimates, which are proved below. 

(4.5) 

(4.6) 

By using (4.5) and (4.6) in (4.4), with a = 

(4-7) 

The claim in (4.1) now follows readily from (4.7) and (2.9). 

Hence, it only remains to prove (4.4) and (4.5). The latter follows from the straightforward 
inequality zexp{-p-z} < l /(P-e) together with l + p - z < l + p , p > O a n d O < z < l . The in
equality (4.4) can be shown as follows. 

(4.8) 

4.2 Comments on weakenings of condition (2.4) 
Theorem 2.1 is proved under the regularity assumption on the shape distribution H which is 
stated in (2.4). A natural question is if (2.6) still holds if (2.4) is not satisfied. Upon some 
thought it is realized that the previous proof can be modified in a straightforward manner to 
work also under the following weaker assumptions on H. 

(2.4) is changed to: h(t) is piece-wise continuous and strictly positive on [0,Tu)• (4.9) 
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(2.4) is changed to: h(t) is piece-wise continuous and strictly positive on (0,Tu), 
together with the assumption lim q^„ A,^ > 0. (4.10) 

However, it is an open question what happens to (2.6) generally if h(t) is not strictly positive 
on [0,Tu ), in particular if h(t) = 0 in a whole vicinity of t - 0. 
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