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On the Choice of Sampling Design under GREG 
Estimation in Multiparameter Surveys 

Anders Holmberg 

ABSTRACT 

At the design and estimation stages of a survey, large survey organizations often use 
auxiliary information. Technological advances in data capture and a better accessibility of 
registers open up for an increased and more efficient use of such information. This paper 
addresses issues of how to use auxiliary information efficiently in sampling from finite 
populations. Previous results regarding the choice of optimal design are extended to the 
case of several study variables. We suggest approaches to achieve a high overall 
efficiency, and compare these approaches with single-variable routines, often used by 
practising survey statisticians 

Aim with this report 
The Pareto 7tps sampling scheme is already in use at various of Statistics Sweden's surveys. In an earlier 
report in this series by Rosén (R&D report 2000:5) the combination of Pareto raps and GREG estimation is 
put forward as a sampling strategy with particularly good properties. In this report, we also end up in 
studying strategies that combine 7tps sampling and GREG estimation. However, in this report we address 
the problem of choosing an efficient design from a multiparameter perspective. Compared to "optimal" 
designs in the single-parameter case, a multiparameter perspective requires some sort of compromise 
approach. We present three approaches to achieve an (overall) efficient compromise design for a 
multiparameter survey. Moreover, we stress the importance of good planning routines in multiparameter 
surveys, and in a numerical example we outline how the survey statistician diagnostically can compare 
different design alternatives considered at the planning stage. 
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Abstract 

At the design and estimation stages of a survey, large survey organizations often use 
auxiliary information. Technological advances in data capture and a better accessibility 
of registers open up for an increased and more efficient use of such information. This 
paper addresses issues of how to use auxiliary information efficiently in sampling from 
finite populations. Previous results regarding the choice of optimal design are extended 
to the case of several study variables. We suggest approaches to achieve a high overall 
efficiency, and compare these approaches with single-variable routines, often used by 
practising survey statisticians. 
Key Words and Phrases: Auxiliary information, GREG Estimator, Optimal de­
signs, Survey planning. 

1 Introduction 

A sample survey is in general taken with the purpose of estimating a large set of parameters 
9\, #2, • • • (totals, means, ratios, medians, Gini coefficients etc.) of a finite population U = 
{ 1 , . . . , k,... , N} . The most important of these parameters, say 9 = (ö x , . . . , 9i:... , 9j)', 
form the basis for planning the survey. The task of the survey statistician is then to find an 
efficient combination of sampling design p(-), and estimator vector 9 — (0\,... , 0 j , . . . ,#/) ' , 

(efficient strategy Q, § — p(-), 9 ), i.e., such that the final choice results in 'small' mean 

square error for each estimator 9\. 
When there is only one parameter 9 to estimate, say a population total t — Ylkeu Vk = 

Y^uyk-i n e statistician might start by choosing a suitable member 9 of a specific class of 
estimators known to have good properties, e.g. GREG (generalized regression) estimators, 
followed by an attempt to find a sampling design that minimizes the mean square error of 
9, or variance if 9 is unbiased. 

There is no simple straightforward generalization of this single parameter approach to 
the multiparameter case. However, in this paper we will discuss a couple of approaches that 
might be useful to achieve high overall efficiency. 

The paper has the following structure. In the following preliminaries we give the back­
ground to the problem, introduce our basic notations and specify the survey situation that 
is considered. In section 2 we treat the single parameter case and give an overview of results 
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on the choice of 'optimal' designs. It lays the basis of section 3, which contains results of 
our approaches concerning the multiparameter case. Both section 2 and 3 naturally leads to 
treatment of without replacement probability proportional-to-size sampling, (irps sampling), 
combined with GREG estimation. Since the survey statistician needs feasible methods to 
implement theory, and since relatively recent progress in the area of nps sampling has been 
made, a short overview is provided in section 4. Comparisons between our suggested ap­
proaches are made in section 5. In section 6, a further extension of the multiparameter 
approaches is outlined, and, finally, our conclusions and recommendations are given in sec­
tion 7. 

1.1 Background and notation 

Many results in survey theory address the problem of finding an efficient strategy. Those 
results rely on the availability of auxiliary information (e.g. the literature on optimum al­
location in stratified sampling, on nps sampling designs or on estimators using auxiliary 
variables.) This paper assumes that there are P auxiliary variables accessible at the plan­
ning stage. They are denoted ui,... , up,... ,up, and their values upk, (p = 1 , . . . ,P), are 
known for every element k in the population. The vector of the most important parame­
ters, 6, often consists of functions of the population totals of the unknown study variables, 
Vi,--- , y „ . . - ,V(j,i.e. 0 = ( / i ( t ) , / 2 ( t ) , . . . , / i ( t ) , . . . , / 7 ( t ) ) 'where t = ( „ „ . . . ,tyq,... ,tyQ)' 
Henceforth, we will consider the case where 9 = t with a corresponding estimator vector 
9 = i (i.e. / = Q.) 

When we plan our survey strategy, we try to use the auxiliary information in the choice 
of design as well as in the choice of estimator, in such a way that the sampling error of 
t becomes as small as possible. Statistical models can be used as an aid in this planning 
process. Hence, we assume that the statistician has useful a priori knowledge about the 
relations between the study variables yq and the auxiliary variables. 

We presume the structure of these relations makes it relevant to formulate linear models, 
£q> (Vqk = x'qk0q + £qk) for the study variables, with Eiq(eqk) = 0, Viq(eqk) = a2

qk and 
Eeq(£qk£qi) = 0 (k^l), i.e., 

(1) 

where x^fc = (xlqk,... k) is a suitable set of Jq (positive) auxiliary variables 

formed from u\,... ,up,... , uP, (3q = (/3lq,... , /3jq,... ,/3Jq) are model parameters. The 

values <7g1? •••,cr2
N are considered known, although knowledge up to a constant multiplier 

sometimes is sufficient. 
To select a set sample s C U of size ns, a without replacement sampling design p(-) will 

be used. We denote the first-order inclusion probabilities by 7rfc (k = 1 , . . . , N) and the 
second-order inclusion probabilities by -Kki (k,l = 1 , . . . ,N). (Whenever necessary, a dot, 
i.e. 7T, is used to emphasize inclusion probabilities that depend on assumed or approximated 
numerical values of cr7

k.) 
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The population total of yq, tVq = YLuVrt, can be estimated by the GREG estimator, 
which is defined as 

(2) 

Here, tVqir = J2k&s yqk/^k = J2S Vqk/^k is the well known Horvitz-Thompson or 7r estimator, 

; ) , i.e. a Jg-dimensional vector of xq totals, tXqW is a vector of 

the corresponding IT estimators and 

(3) 

is an estimated vector of regression coefficients, where cqk is a suitable constant. 
Moreover, the Taylor expansion variance of iVqT is given by 

(4) 

where Eqk = yk — xqkBq (k — 1 , . . . , N) are population fit residuals, with 

B g = (£)(/ x?fcXgfc/c,,fc) Y2u yqkX-qk/cqk a finite population regression coefficient. (Details of 
GREG estimation are given in Särndal, Swensson and Wretman (1992) sections 6.4-6.7.) 

Henceforth, the results in this paper concern the family of GREG estimators which 
includes several well known estimators used in practice, (e.g. the post-stratified estimator 
and the common ratio estimator.) A GREG estimator is approximately unbiased even with 
poorly fitted models, but with a strong relationship between y and x, and a fair knowledge 
of that relationship, the GREG estimator will outperform the IT estimator as far as efficiency 
is concerned. However, other types of estimators could also be mentioned when we discuss 
strategy selection using auxiliary information. 

An estimator related to the GREG estimator is the 'optimal regression estimator', iyq0r, 
(Rao (1992, 1994, 1997), Cassady and Valiant (1993) and Montanari (1987, 1998)), 

where B , = |̂ Vr(tX(jW)J C(tXqK, tVqT), with V(tXq7r) and C{tXq7r,tyqK) being unbiased estima­
tors of V(iXqir) and Ci}.Xq7t,iyqT,) with dimensions Jq x Jq and J , x 1 respectively. (Expres­
sions for the well known Horvitz-Thompson or alternatively the Sen-Yates-Grundy variants 
of V(ix •„) and C(tXq7r,iyqlT) can be found in Särndal et al. pp 44-45, 170.) To use the vari­
ance and covariance estimators in point estimation can be very impractical and sometimes 
it leads to trouble. Nevertheless, Montanari (1998) discusses some situations when tyq0r can 
be preferred to the GREG estimator. 

Another more useful and wider family of estimators, are the calibration estimators de­
scribed in De Ville and Särndal (1992), Lundström and Särndal (1999) and Estevao and 
Särndal (2000). They are asymptotically equivalent to the GREG estimator, and they are 
appealing to practitioners in attempts to reduce non-response bias. 

3 



Nonetheless, in the following neither calibration estimators nor tyq0T, will be discussed. 
This restricts our strategy concept to strategies where the estimator is a member of the 
GREG estimator family, (different GREG estimators for different parameters are allowed.) 
Since the above estimators are related to the GREG estimator, we believe that this is a mild 
restriction. In the planning stage of a multiparameter survey, the choice of design, which 
affects all parameter estimates, is likely to be more important than the choice between 
related estimators. Therefore, if we can find an 'optimal' design for an efficient estimator 
such as a GREG estimator, such a design is apt to work well combined with the other 
estimators as well. (As to the choice of a specific GREG estimator, it is henceforth a tacit 
understanding that when a model like (1) is explicitly presented; the model is satisfactory, 
and the information given is good enough for the statistician to make a suitable GREG 
estimator choice.) 

Note that we consider design-based inference, but we try to make as efficient use of 
supplementary information as possible through models. Our approach will be model assisted, 
and we use models to assist in our design selection and in choosing estimators for t. In the 
next section we reproduce results on finding an 'optimal' design for a GREG estimator in 
the single parameter case. 

2 Selecting an optimal design in the single parameter 
case. 

If we consider GREG estimation, the question of which strategy to choose can be limited to 
the issue of finding a design that minimizes V(iyqr). However, direct minimization of V(iyqT) 
is impossible, but given a model £ , and utilizing the statistical properties of the model errors 
eqk, we can try to minimize the anticipated variance, (i.e. the variance over both the model 
£? and the design p, e.g. see Isaki and Fuller (1982)). 

If the model £g is well specified, then an approximation to the anticipated variance can be 
written as (see Särndal et al. pp 450-451), 

(5) 

For a sampling design p(-) such that Ep(ns) = n, Result 12.1.1. in Särndal et al. show 
that a near 'optimal' design, i.e. a design that minimizes (5), is such that the first-order 
inclusion probabilities for k = 1 , . . . , N are given by 

(6) 

and the minimum of ANVq{iyqr) is 

(7) 
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Hence, we obtain an 'optimal' design by choosing irk oc aqk, i.e. the statistician should 
use a -Kps design with aqk as size measures. For example, if aqk = (r2

quql, where a2
q is a 

constant (possibly unknown) and uq e {uit... , up,... , uP} is one of the auxiliary variables, 
this result suggests that by using a well chosen GREG estimator, and choosing a design 
where 7rfc oc uq

q
k , we obtain a near 'optimal' strategy for estimating ty . 

We will return to the issues of implementing a nps design in section 4, but from here 
on, designs where 7rfc are proportional to some known size measure, z, are referred to as 
nps(z) designs. For the moment we conclude that from a theoretical view, the combination 
of GREG estimation and a irps(a) design is near 'optimal' with respect to minimizing an 
approximation to the anticipated variance. In the single parameter case, similar conclusions 
can be made, (for fixed size designs), from the results in Cassel, Särndal and Wretman (1976, 
1977), (Theorem 1 or Theorem 4.1 respectively) and Theorem 2.1 in Rosén (2000a). 

The results above can be helpful for survey planning but the limitations are obvious. As 
for many other optimality results, focus is on a single study variable, which is insufficient 
for a practising survey statistician having to deal with several parameters of importance. 
(For thorough reviews on optimization problems in choosing sampling designs for surveys, 
see Rao (1979) and Bellhouse (1984).) 

3 Selecting a 'best' overall design in the multiparame­
ter case 

More realistically, suppose that we want to estimate t = (tyi,... ,tVq,... ,tyQ) , where Q > 
2, and let the relative importance of the parameters be reflected by a set of importance 
weights Hq, (Ylq=i Hq = )• Moreover, suppose that a good choice of GREG estimator can 
be made for each population total tVq. Then, the statistician's task is to find a design that 
in some sense could be considered optimal for all parameters. 

However, one problem now is that there is no - in contrast to the single parameter case 
- single well-defined meaning of 'optimality'. A design that is optimal or close to optimal in 
the single parameter case, might not be the best choice in an overall multiparameter sense. 
For example, suppose a diligent statistician with a specified amount of auxiliary information, 
time and skill, should use the 'optimal' design result above to seek what he a priori believes 
to be the theoretically 'optimal' design for every parameter, tyq, (q = 1 , . . . , Q), separately. 
Most likely, he then would find design solutions that differ, and he can only choose one of 
them. The statistician in such a situation is forced to seek a compromise design, which he 
believes works reasonably well for all parameters to be estimated. 

Here, three different compromise approaches that can be used to plan the selection of 
a design in the multiparameter case are discussed. They all have different minimization 
criteria, and all are in a sense extensions of the result from the previous section. The first 
two approaches (A and B) are appealing at a first glance, but they have some built in scaling 
problems that are avoided in approach C. Since the proofs are carried out in a similar way 
we will only provide details for the third approach (approach C). 
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3.1 Approach A: Minimizing a weighted sum of variances 

In the multiparameter situation, a straightforward criterion for selecting the best overall de­
sign for estimating t is to minimize the trace of V(tr), i.e. minimizing the sum X^Li V(tyqr), 
or if we like to attach importance weights Hg, minimizing Y2q=\ HqV(iyqr)- Since V{iyqT), 
(q = 1, . . . , Q), is unknown, we could instead look for the design that, under the restriction 
Y^u nk — n and assumed models £q (see eq. (1)) for (q = 1, . . . , Q), minimizes a weighted 
sum of approximated anticipated variances, i.e. a design that minimizes SANV(tr) — 
Yl%HqANVq{tyqr). Rewriting this weighted sum as SANV(tr) = E c / K ' - ^ E ^ i Hqa

2
qk, 

and using the Cauchy-Schwarz inequality directly yields Result 3.1 
Result 3.1. A sampling design p(-) with the expected sample size Ep(ns) = n that 

minimizes SANV(tT), is such that the first order inclusion probabilities for k = 1 , . . . ,N 
are determined by 

(8) 

Clearly, a design with ir^ = iT(A)k is a compromise that considers all the involved pa­
rameters and their importance. However, for q = 1,. . . , Q, ANVqA{iyqr) will differ from 
ANVqm:m{iyqr), since, in general, the ratios in the inequality below will be larger than 1. 

The sizes of the Q ratios between ANVqA(iyqT) and ANVqm\n(tyqr) will depend on Hq, and a2
k. 

In addition, since V^q{yqk) = o2
qk for q = 1, . . . , Q, the resulting design will have properties 

that are dependent on the measurement scales of the variables involved in the Q models. 

3.2 Approach B : Minimizing a weighted sum of relative variances 

Another measure often used by statisticians in survey planning is the coefficient of variation of 
the estimators. In approach B we use a relative variance, RVq(iyqr) = Vq(iyqr)/tq. Suppose 
that we want to minimize Y^Z=\HqRVq{iyqr)- Again, Vq(iyqr) is unattainable but we can 
use ANVq(tyqT). Our approximated relative variance measure then becomes ANRVq(tyqr) = 
ANVq{iyqT)/t2

q, and we seek the design that minimizes, SANRV{ir) = £ ? = 1 Hq
ANVf^r). 

Result 3.2. A sampling design p(-) with the expected sample size Ev(ns) = n that 
minimizes SANRV(ir), is such that the first order inclusion probabihties for k = 1,... , N 
are determined by 

(9) 

Since we are minimizing a sum of relative measures, this approach is less sensitive to 
different scales of the involved variables than approach A. However, if aqk = crqfq(uqk), the 

6 



constant multiplier a2 does not cancel out and it may differ in size between the terms in 
Ylg=i Hqaqk/tf- Moreover, the requirements on the auxiliary information with this approach 
are extremely high. In addition to a2

qk, the approach involves knowledge of the parameters, tq 

(q = 1,... ,Q), that we want to estimate! In practise, t2, (as well as a2
k) must be substituted 

by planning values i2, and poor guesses of t2 can have large effects on the design properties. 
Instead, we propose a less scale dependent approach, which also relate to how much we 

lose in precision compared to the single parameter 'optimal' designs, given in section 2. 

3.3 Approach C: Minimizing a weighted sum of relative efficiency 
losses. 

Variance ratios are often used to compare the efficiency of strategies. This principle is 
used in approach C. As a background to motivate our measure and minimization criterion, 
let V(t)nopt denote the estimator variance of an optimal strategy (i.e. the strategy gives 
the smallest possible sampling error when estimating t), and let F(i)n . be the estimator 
variance of t for another strategy flpi. The relative loss in efficiency (i.e. variance increase) 
for one strategy compared to the optimal strategy can then be defined as REL = (V(i)n . — 

V(t)nopt)/V(t)noPf Then, with Q y-totals to estimate, the overall (total) relative loss in 
efficiency is 

(10) 

With t = t r we realize from section 2, that, by using a model £ (5) and (6), we can theo­
retically derive an 'optimal' design, with 7rg(opt)fc, (k = 1 , . . . , N), for every q, (q = 1 , . . . , Q). 
We can also calculate ANVqmm(iyqT) (see equation (7)) for every iyqr, (q = 1 , . . . , Q). 

By letting ANVqmin(tyqr) take the place of V(ty )n t in (10) we can formulate approach 
C as finding the design that minimizes an approximation to (a weighted) Anticipated Overall 
Relative Efficiency Loss, {AN O REL), here defined for GREG estimators as 

(11) 

Result 3.3. Let p(.) be a sampling design with the expected sample size Ep(ns) = n. 

Suppose that t = (tyi,... , tVq,... , tVQ) is estimated by ir = (iyiT,... , iyqT,... , iyqr) as 
defined by (2). The design for which the anticipated overall relative efficiency loss (11) is 
minimized, is such that the first order inclusion probabihties for k = 1 , . . . ,N are determined 
by 
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(12) 

where i^q{opt)k is given by (6). The minimum value of ANOREL is then 

(13) 

where ANVqC{tyqr) = Y.u^(c)k ~ l)alk and ANVqmin(iyqr) is given by (7). 
Proof. Let irk (where irk < 1 for k = 1 , . . . ,N) denote the first-order inclusion prob­

abilities of a design p(-) where Ep(ns) = Ylu^k = n. Minimizing (11) is equivalent to 
minimizing 

(14) 

Simplifying by setting and changing the order of summation we get, 

(15) 

Evaluating the right side of (15) and applying the Cauchy-Schwarz inequality gives 

where equality holds if and only if Equation (13) is obtained 

by inserting 7T(C)fc for ixk in the numerator and ifq(opt)k for it k in the denominator of (11) and 
evaluating, (using (7) and 

Remark 1 Proofs of results 3.1 and 3.2 are derived in a similar manner. 
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A simple example illustrates how result 3.3 can be used in practice. For simplicity we now 
consider the case when all the parameters have equal importance weights, i.e. Hq = l/Q, 
for(g = l , . . . ,Q). 

Example 2 In the planning stages, Result 3.3 can be used to select a design which gives us 
a strategy Qpi that will give a low overall relative efficiency loss. Again, suppose we want 
to estimate t = (tyi,... , tyq,... , tyQ) , and that we have auxiliary information to formulate 
models £q, (q = 1 , . . . , Q) that are good descriptions of the (yq, uq) scatterplots. 

Furthermore, with 'guesstimates', 7g, of 7 , perhaps taken from previous surveys or sub­
ject knowledge, we can for q = 1, . . . ,Q and k = 1 , . . . , JV easily calculate 7rq(opt)k = 

~ / 2 "7 /2 

nu l /Ylu uqk • Resutt 3.3 then implies that by using GREG estimators tr = 
(£ y i r , . . . ,tyqT,... ,tyQT) as defined in (2) and choosing a design such that the first-order 
inclusion probabilities are determined by, 

we expect to get a 'small' overall relative efficiency loss. 

Approach C has an advantage over A and B. Since the measure that is minimized is based 
on ratios, the scaling effects of the involved variables are neutralized. This can be observed 
in the example above, where the constant factors a^ cancel out. 

The reasoning in this section can also be applied for studying the effect of different sample 
sizes. For example, calculating ANVqmm(iyqr) for q = 1,...Q with a given n, gives us the 
opportunity to study the sample size, n*, that is needed for (13) to meet certain constraint 
criteria. 

Example 3 Suppose all parameters are equally important (i.e. Hq = l/Q for q = 1 , . . . , Q), 
and let n* be the sample size needed so that, on average, ANVq(tyqT) does not exceed 
ANVqmin(iyqr) by more than 100 x c %. Furthermore, suppose we begin with a starting value 
of n and calculate ANVqmin(tyqr) for every q = 1 , . . . , Q. If the constraint c is not too strict, 
we then can calculate the smallest value of n* that satisfies the inequality, 

(16) 
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Writing and using 

(15), the left hand side of (16) can be written and after some 
algebra we get, 

Hence, it is possible determine the sample size that is needed to meet specifications made on 
ANORELm\n in equation (13). (When further elaborating approach C (see section 6) such 
calculations might be helpful.) 

Equations (6), (8), (9) and (12) all suggest that the inclusion probabilities should be 
chosen proportional to some function of V^ (yqk) = o2

qk. To apply this in practice, we need a 
good sampling scheme to implement the suggested designs, and we need to have a good idea 
of the values of a2

qk. In reality o~2
qk is unattainable, but it is often fruitful (as in Example 2) to 

use a model where G2
qk is a function of an auxiliary variable uq. Subject knowledge, guesses, 

or previous survey estimates can be used as planning values of a2
qk. The next section gives 

an overview of irps sampling designs, and to connect to the previous sections, we give recent 
references where irps sampling is combined with GREG estimation. 

4 Implementing a πps design 
The designs discussed in the previous section all suggest that unequal probability sampling 
should be used (IT k should be chosen proportional to some measure z.) Hence, we need a 
sampling scheme that implements irps(z) designs. The use of irps(z) designs has a long 
history in survey sampling, and it is one way of using auxiliary information in the design 
stage. However, much of the discussion in the literature focuses on strategies where a rrps(z) 
design is combined with the ir estimator. The reason for this is tradition. When a study 
variable yq is strictly proportional to z, and irk = nzk/J2u zki w e n a v e ^/9 - = i f W This 
means that with a random size irps(z) design, tyqV will vary due to the variation in sample 
size only, and for a fixed size design, ty w has no variation at all. 

Nevertheless, given a irps(z) design, there is no need to restrict ourselves to the ir es­
timator. Since we have auxiliary information at hand we can use the GREG estimator. 
Furthermore, with GREG estimation our loss in efficiency by using a random size design, 
instead of a fixed size design, is likely to be small (if Ep(ns) is not too small.) Random size 
designs like the traditional Poisson irps sampling, or the recently proposed PoMix sampling, 
are described in Kroger, Särndal and Teikari (1999). 

However, statisticians often prefer fixed size designs. They enable control over the sample 
size and the statistician avoids the task of explaining to clients that the initial sample size, and 
thereby the cost of the survey, is a random component. Over the years, these circumstances 
have led to an extensive effort to find a selection scheme for implementing a fixed size irps(z) 
sampling design. Although many sample selection schemes have been proposed, it has turned 
out to be hard to devise a fixed size scheme for an arbitrary sample size n that has a number 
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of desirable properties, such as (a) the actual selection of the sample is relatively simple, 
(b) all first-order inclusion probabilities are strictly proportional to the size variable, (c) the 
design admits (at least approximately) unbiased estimation of the design variances V(iyg7T) 
and V(tyqT). If we also want to use the technique of permanent random numbers (PRN) in 
the sample selection, which is desirable in large survey organizations, it will be even harder. 

Nevertheless, for statisticians preferring fixed size Ttps sampling, some sampling schemes 
fulfill most of the requirements above. Relatively new fixed size nps designs are order sam­
pling designs, as Pareto irps and sequential Poisson irps (see Rosén (1997), Saavedra (1995) 
and Ohlsson (1995) respectively). Fixed size PoMix proposed by Kroger, Särndal and Teikari 
(2000) is another alternative, and comparisons have shown (see Holmberg (2001) and Holm-
berg and Swensson (2001)), that also model-based stratified simple random sampling (mb-
STSI) proposed by Wright (1983) is a method that should be considered. 

However, which sampling scheme to use is not the issue here, and depending on the 
situation there are pros and cons for all of them. Here, we merely state that alternatives 
that approximately fulfill the requirements above exist. Rosén (1997, 2000a, 2000b) and the 
references therein provide details on the Pareto irps, which is used in the Swedish Crop Yield 
Survey and Swedish Market Tendency Survey. PoMix sampling is described in the references 
by Kroger et al, and Holmberg, and mb-STSI can be studied in Wright as well as in Särndal 
et. al chapter 12. 

5 A numerical comparison of the multiparameter ap­
proaches. 

In this section, we will give an example on the use of the above multiparameter approaches, 
and how it is possible to use information collected at the planning stage for further elabora­
tion of and for support in the choice of sampling design. 

One of the purposes of this paper is to suggest approaches that might be useful to achieve 
a high overall efficiency. In a factual survey situation, the success in achieving this depends 
highly on the quality and structure of the auxiliary information and how the statistician 
uses the auxiliary information. The usefulness of the approaches in previous sections will 
therefore vary from case to case. However, we can mimic a real survey situation to give an 
idea on how they can be applied and how they might work in practice. 

In the next section's example, we use a real and easy accessible finite population, (the 
population of Swedish municipalities MU281 available in appendix B in Särndal et al.) We 
place ourselves at the planning stage of a multiparameter survey from this population, where 
we are supplied with auxiliary variables, and where we have certain more or less valid beliefs 
and guesses about the relationships between our study variables and these auxiliary variables. 
The chosen relationships are not necessarily the best for this specific survey population, yet 
chosen to mimic a realistic starting point for a statistician planning a survey with auxiliary 
information, and to mimic a situation where the involved study variables are thought to 
have varying relations with the available auxiliary variables. (The latter is common in farm 
surveys, where some auxiliary variables that work well for farms specialized on crop might 
be poor for farms specialized on animals and vice versa.) Hence, the relationships we use 
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suggest a point estimator (a GREG estimator) for each parameter, and they give us ideas of 
alternative sampling designs where the auxiliary information can be utilized. 

Altogether, our planning stage conditions give us a variety of alternatives for selecting 
a sampling design. The statistician subjectively determines many of these conditions, (i.e. 
through his beliefs about the relationships between the auxiliary variables and the study 
variables, and his choice of important parameters.) Still, given these conditions, we can 
compare the design alternatives, as is done below. In the end, the results of such comparisons 
might lead to a design decision that is good in meeting the overall demands of the survey. 

5.1 Planning a multiparameter survey to achieve overall efficiency: 
An example 

In our example we use all the quantitative variables in the MU281 population. As auxiliary 
variables we have Ui — P75 (1975 population) and u2 = 582 (total number of seats in the 
municipal council 1982) (and a constant it3)c = 1 for every k € U.) The six important study 
variables y\,... , ye are: 

2/1 
yi 

2/3 

2/4 

2/5 

2/6 

= P85 
= RMT85 
= ME84 
= REV84 
= CS82 
= SS82 

(1985 population) 
(Revenues from the 1985 municipal taxation) 
(Number of municipal employees 1984) 
(Real estate values according to 1984 assessment) 
(Number of conservative seats in municipal council 1982) 
(Number of Social Democratic seats in municipal council 1982) 

We plan to use GREG estimators ir = (iyir,... ,iy6r)' to estimate t = (tyi,... ,tw)', and 
the parameters are rated as equally important, (i.e. Hq — 1/6 for q = 1 , . . . ,6.) To assist 
in the planning of the sampling design, we have some a priori ideas of the relations between 
the study variables and the auxiliary variables. These are described in table 1, i.e. we 
believe it is reasonable to apply linear models £g, (q = 1 , . . . ,6), according to (1), where a2

qk 

are substituted with 'guesstimates', a2
k. In this example, the a2

qk:?, are different functions 

Table 1: Planning stage assumptions for the relations between the auxiliary variables and 
the study variables. 

of different auxiliary variables, and the constant factors, äq (discussed in example 2), are 
assumed to be 1 for every q. (Knowledge of such factors is important when approach A and 
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approach B are applied, but for approach C and the single parameter approach of section 2, 
it is not necessary.) 

Note that the purpose of the information given in table 1 is not to illustrate some true or 
even necessarily good model relations for this population. The purpose of the chosen model 
relations is to reflect what might be a realistic planning stage situation. By this, we mean 
a situation where the statistician, for each parameter individually, believes that the survey 
can benefit substantially from using the auxiliary information in the design as well as in the 
estimator. Furthermore, the six model relations in table 1 illustrate flexible differences in the 
planned way to use the auxiliary variables, especially with respect to d2

qk. For q = 1, 2, 3,4, 
ä2

k is a function of the auxiliary variable P75, for q — 5 it is a function of 582, while for 
q = 6 it is constant. Obviously, the mixture of different functions for ä2

k will influence the 
properties of a compromise design. To further clarify, we translate some information in table 
1 to more 'well known' cases. For example, if we insert the values of äqk into equation (6) 
of section 2, the planning relations of table 1 imply: (i) When it comes to estimating ty3, 
then a3k — Uik = P75k, and the planning strategy the statistician believes in is a Trps(P75) 
sampling design combined with a GREG estimator using x^ = (1, P75). (ii) To estimate ty6 

he suggests a design with equal inclusion probabilities, (i.e. 7r6(opt)fc = n/N for every k £ U), 
combined with a GREG estimator where x^ = (1,582). A similar kind of reasoning can be 
used to understand the implications of other planning stage assumptions given in table 1. 

We can use the setup from table 1 to create a diagnostic table for the alternative planning 
stage designs. By calculating the d2

qk values and applying them to equations (6), (8) and 
(12), we can determine 7r7(opt)fc, -k(A)k and K(C)k for A; = 1 , . . . ,281 and q = 1 , . . . ,6. Then, 
for the different design alternatives (the different sets of 7ir:s), planning values, ANV (tyqT) 
and ANVqmin(tyqr) can be computed from equations (5) and (7). These values can then 
be studied and used to make a prediction of how the different design alternatives might 
affect univariate and overall precision of the survey. If the information collected from such 
a prediction also carries over to the implementation of the survey, it is valuable for the final 
design choice. 

Table 2 illustrates a planning stage comparison between the designs considered for a 
MU281 survey, with Ev(ns) = 40. From the information given in table 1, we have computed 
^•^VV^min{iyqr) f° r t n e six designs considered from the single parameter approach, (here 
denoted pi i = 1 , . . . ,6.) Then, predicted relative efficiency losses, i.e. 

have been computed for pi — p6, as well as for the compromise designs, (p7 and p8), that 
follows from approaches A and C of section 3. For each design alternative, the predictions 
of the overall, (total), efficiency loss are summarized by the rowmeans, given in the last 
column. The rowmeans can be interpreted as planning stage predictions of ANOREL, i.e. 

13 



Table 2: Planning stage relative efficiency losses, for eight alternative 

sampling designs, (Ep(ns) = 40), when estimating six population totals of MU281. (Boldface 
numbers show the largest efficiency loss for each design.) 

Not surprisingly, table 2 indicates that the smallest ANOREL ^ (13.0 %), is obtained for 
the design following as a result of applying approach C. The design pi, with IT k 'optimally' 
chosen for estimating tyi (i.e. with -K^ = TCi(opt)k ^ zk = u\k)i n a s n e second smallest (17.1 
%). For design pi, small (<10%) relative efficiency losses are predicted when tyi, ty2, tV3 are 
to be estimated, but large (>20%) for tyi, ty5, tV6. The designs P2 a«d p3 (which by the way 
are identical), and the design following from approach A, also predict small losses for tyi, ty2, 
ty3 and large for estimating ty4, tys, tye. For the designs p^, p$ and p$, the pattern is reversed. 
From a multiparameter perspective none of the designs pi — pj seem to be satisfactory as 
compromise designs. 

Remark 4 Concerning approach B, our data does not permit a fair comparison with the 
other approaches, and we suspect that in most practical situations, the information needed 
at the planning stages is too demanding. However, sometimes a planning value for TZq, say 
B 9 , might be available, and then 

(17) 

could be used as planning values for 
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5.2 Design comparisons on population data 
The results in table 2 give rough guidelines of the properties of the considered designs. For 
any real finite population, the model assumptions made at the planning stage will deviate 
more or less from factual conditions. Therefore, actual calculation of estimator variances 
from our population, will give valuable information on what would have happened, if we had 
implemented the planning stage ideas of table 1. It will also give indications on to what 
extent the predicted design properties, as those of table 2, are transferable and valid for the 
actual sample survey. 

For all our six parameters tyi —ty6, we consider GREG estimation, iyir — imr (see equation 
(2)), using xqfc and cqk = ä2

qk from table 1. A simple way to compare the alternative designs 
of table 2, is to calculate the estimator variances under Poisson sampling. For Poisson 
sampling, the Taylor expansion variance of equation (4) is VT(PO) (iVqr) = Ylu {nkl ~ -0 ^h 
and we calculated VT{PO)q{tyqT)Pi for q = 1 , . . . 6 and all considered designs p;, (i = 1 , . . . 8). 
Table 3 is based on the results from those variance calculations. 

Table 3: Estimated relative efficiency losses, for eight alternative 
• q \-Vqrj 

Poisson sampling designs, (Ep(ns) = 40), when estimating six population totals of MU281. 
(Boldface numbers show the largest efficiency loss for each design.) 

To simplify comparisons, table 3 has the same structure as table 2. Thus, we show results 
for all the eight alternative sampling designs considered at the planning stage. For each pa­
rameter we determine the smallest estimator variance V over all the considered designs, i.e. 

Given the information we used 

at the planning stage, the values of V (iyqr), will then represent the 'best' result we might 
obtain for every parameter separately. By dividing every VT(PO)q{tyqT)Pi with V(iyqr), pa­
rameter by parameter, we then get a measure comparable to the predicted relative efficiency 
losses PRELp<q shown in table 2. 
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The general pattern of the relative efficiency losses in table 3 is the same as in table 
2. Hence, given the selected GREG estimators, table 2 gives a good image of the relative 
efficiency losses for the considered designs under Poisson sampling. Parameter by parameter, 
the design based on approach C is never the best alternative, but in an overall sense, it is the 
most efficient, with (13.1%) mean efficiency loss. Therefore it can be argued that it also is 
the best compromise design, followed by design px, just as in table 2. One notable difference 
between the planning values of table 2 and the population values in table 3, is that design p^ 
is slightly better than design p5 for estimating ty5. This is likely to happen in reality as well, 
the planning values are just guesses, more or less accurate, and ANV(tygr) and Vrq(tyqr) 
are different. 

Remark 5 Table 3 is based on Poisson sampling estimator variances. Similar tables with 
similar results can be computed for the fixed size designs proposed in section 4- However, 
since there will be more approximations involved, the results might be somewhat less reliable. 

Remark 6 The designs pi (or p^) and pe in tables 2-3 are in a sense traditional textbook 
designs. In pe, all inclusion probabilities are equal as in simple random sampling or (as for 
the data in table 3) Bernoulli sampling, pi is traditional since the inclusion probabilities are 
proportional to the most useful auxiliary variable P75, i.e. (ixk oc U\^). An untransformed 
auxiliary variable is often used as size measure in irps designs. It should be noted from 
tables 2-3 that these latter designs are the worst in overall efficiency terms. Therefore, from 
a multiparameter perspective, they cannot be recommended in situations similar to the one 
described. 

If the effects of using a design such as p8 not are entirely satisfactory, then a more 
elaborate compromise design is possible by applying approach D, given in the next section. 

6 Approach D: Minimizing the weighted sum of rela­
tive efficiency losses under restrictions. 

This section outlines yet another multiparameter alternative. Here, we choose to extend 
approach C, although similar reasoning can be applied for approaches A and B as well. 

The statistician may consider this approach from start, but for two reasons we suggest 
that the implications from applying approach C (which gives a minimum ANOREL) are 
examined first. Firstly, realistic restrictions are more easily found after studying results 
from approach C, and secondly, approach C will provide useful numerical knowledge for the 
calculations in approach D. 

If we once again study table 2, and if we regard approach C as the approach most suitable 
for our goals, we observe that, although approach C implies the smallest overall efficiency 
loss, these losses vary between the parameter estimates. For example in table 2 we have 
more than 15% efficiency losses for the parameters tV2, ty3 and ty6, while the others have 
smaller values. 

We might want a design where the sum, (ANORELpJ, still is small, but where certain 
restrictions on the individual variances are fulfilled, so that the efficiency loss compared to 
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the 'optimal' variance does not exceed, say cq. Hence, we can formulate the non-linear opti­
mization problem below, where the specified restrictions now make the importance weights 
Hq redundant. 

Problem 7 Minimize the objective function 

where under the restrictions 

The number of restrictions and the mixing between linear and non-linear restrictions, as 
well as equality and inequality restrictions complicate the problem. Therefore, it is hard to 
find useful analytical solutions. However, the Karush-Kuhn-Tucker conditions apply, and if 
the Q <7g (^-restrictions are not too strictly set, solutions can be obtained with non-linear 
programming algorithms. Hence, with some effort the flexibility in choosing a compromise 
design can be increased. 

7 Conclusions 

Planning a multipurpose survey with several important parameters is not a straightforward 
task. In this paper, we have presented some potentially useful approaches when auxiliary 
information is available. 

By adapting a multiparameter perspective already at the planning stage, we illustrate 
that compared to a single parameter approach, significant improvements on the overall pre­
cision of a survey is possible. If we plan for the possibility of using the auxiliary information 
in the sampling stage as well as in the estimation stage, we can, by conditioning on an ef­
ficient estimator such as the GREG estimator and focusing on the design choice, construct 
diagnostic tables such as the one exemplified by table 2 of section 5. This can give us valu­
able information to compare the properties of the designs alternatives we consider, and help 
us to choose the compromise design that best fulfills our goals. Since the final survey plan 
depends on the overall objectives, we cannot give absolute recommendations on the plan­
ning of a multiparameter survey. However, approach C of this paper seems to be a useful 
approach. The multiparameter perspective used in that approach takes into consideration 
'optimal' results for the single parameter case, and by minimizing a relative measure it seems 
as if the approach has an overall robustness. That is, the loss in efficiency compared to best 
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possible single parameter solutions will not be extremely high for any parameter estimate. 
Furthermore, if the solution from applying approach C not is satisfactory, a certain amount 
of flexibility in the design choice is possible. Under certain regularity conditions, non-linear 
programming can be used to construct a design that fulfills certain precision requirements. 

A detailed discussion of the sampling schemes that can be used to implement a nps 
sample is beyond the scope of this text. However, there has been progress in that area 
in recent years, especially concerning fixed size sampling designs. Detailed information is 
provided in the references on irps sampling in section 4. 

Finally, a crucial issue for applying the results in this paper is to have good planning 
values of a2

qk. In practice, statisticians often seem to use the approximation cr2
qk^uJ., where 

7g is an estimated or guessed value of a parameter j q (Harvey (1976) describes how Mis­
estimates of 7g can be obtained, and in finite populations, j q often lies in the interval (0, 2) 
or according to Brewer (1963) in the narrower interval (1,2).) Results from Rosén (2000a) 
and Holmberg k. Swensson indicate, that the positive effects of having good 7g values (or 
ä2

k values) for the design, can be substantial. In addition, from the example in the present 
paper we also note that unreflectively chosen values, e.g. choosing a design implicitly based 
on 7g = 2, can have a large negative effect in a multiparameter perspective (see designs P2 
and P3 of tables 2-3.) Hence, more attention (than we believe is the case today) should be 
paid on finding good planning values for a2

k. Especially in surveys repeated over time, such 
attention could be a relatively cheap way to improve the survey quality. 
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