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On the Choice of Sampling Design in Business Surveys 
with Several Important Study Variables 

Anders Holmberg, Patrik Flisberg and Mikael Rönnqvist 

ABSTRACT 

The typical business survey has several study variables and several target parameters. To 
improve the precision of the estimators, it normally also involves several auxiliary 
variables that can be used in the design as well as in the estimators. Different auxiliary 
variables may have varying strength for different target parameters, and the design that is 
best for one parameter may not be best for another. With multiple target parameters and 
multiple requirements on precision, the practising statistician then must select a 
compromise design. In this paper, we present methods to obtain good compromise 
designs. Our approach yields unequal first order inclusion probabilities, which can be 
applied with both fixed size and random size sampling schemes and it offers a flexible 
use of auxiliary variables in the design. An example from a real Swedish business 
population is given. 

Aim with this report 
This report is a follow up of an earlier R&D report in this series (R&D report 2002:1.) Besides extended 
theory, it contains an application on Swedish Business data for an approach that was only outlined in the 
earlier work. This paper is a part of a joint work between personnel at the R&D department at Statistics 
Sweden and the Division of Optimization at Linköping Institute of Technology. 
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On the Choice of Optimal Sampling Design in Business Surveys with 

Several Important Study Variables 

Ande r s Holmberg* P a t r i k F l i sberg a n d Mikael Rönnqvist1 ' 

Oc tobe r 28, 2002 

Abs t rac t 

The typical business survey has several study variables and several target parameters. To 
improve the precision of the estimators, it normally also involves several auxiliary variables that 
can be used in the design as well as in the estimators. Different auxiliary variables may have 
varying strength for different target parameters, and the design that is best for one parameter 
may not be best for another. With multiple target parameters and multiple requirements on 
precision, the practising statistician then must select a compromise design. In this paper, we 
present methods to obtain good compromise designs. Our approach yields unequal first order 
inclusion probabilities, which can be applied with both fixed size and random size sampling 
schemes and it offers a flexible use of auxiliary variables in the design. An example from a real 
Swedish business population is given. 
MCS 2000 subject classifications: 62D05 
Key Words and Phrases: Multiparameter surveys, Optimal sampling designs, Unequal Proba­
bility Sampling, Non-linear programming. 

1 Introduction 

A typical sample survey is concerned with estimating a large number of parameters of a finite 
population. T h e most important of these parameters, say 9 = {9\,..., &i,..., 9j) , form the basis 
for planning the survey. The task of the survey statistician is then to find an efficient combination 
of sampling design p(-), and estimator vector 9 — {9\,..., 0i,..., 9j) (efficient strategy) i.e., such 
that the final choice results in 'small ' mean square error for each estimator 9{. If, as frequently is 
the case in large survey organizations, there is auxiliary information available, the statistician can 
use this information to his advantage and thereby obtain a highly efficient strategy. The auxiliary 
information may be used in the choice of design as well as in the choice of estimator. However, 
whereas the auxiliary information for the estimators may be individually selected and different for 
different est imators, the auxiliary information used in the design is shared, and will affect all the 
parameter est imates. Before implementing a design tha t uses auxiliary information, the statistician 
must therefore closely examine its effects on all his or her key estimators. The design that is optimal 
for one target parameter may be far from optimal for another. Therefore, with a fixed amount of 
resources, it can sometimes be hard to find a design tha t meets the desired levels of precision for 
all important target parameters simultaneously. 
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A well-known example of this problem appears for multi-item optimal allocation in stratified 
sampling. The solution is one in nonlinear programming (Bethel (1989), Cochran (1977) section 
5A3-5A4). In this paper, we are concerned with a similar problem. However, instead of determining 
the best sample allocation between strata, we aim to determine the first order inclusion probabilities 
Trk (A; = 1 , . . . , N) so as to get a design which can qualify as an 'optimal' compromise in meeting 
desired levels of precision for multiple targets; i.e. we aim for a design where the estimator variances 
deviate as little as possible from the estimator variances resulting from single variable 'optimal' 
designs. Our approach is general in the sense that, when the TT^S have been determined, they 
can directly be applied to both fixed size sampling schemes and random size sampling schemes. It 
covers regression estimators such as the family of (generalized regression) GREG estimators and 
the so called 'optimal regression estimator' (see Rao (1994) and Montanari (1998).) The approach 
also allows different auxiliary variables to be considered in combination with the different study 
variables in the design, which means a high degree of flexibility in the use of the auxiliary variables. 
Related work in this area having similar objectives have been made by Sigman and Monsour 
(1995), Saavedra (1999), Kott and Bailey (2000) and Holmberg (2002). Sigman and Monsour 
(1995) sketched a procedure using nonlinear programming that is similar to the one described here 
for Poisson Tips sampling and the Horvitz-Thompson estimator. Saavedra (1999) applied these 
ideas using the algorithm by Chromy (1987) to determine probabilities to be used for Pareto nps 
sampling in a price and volume petroleum product survey. Kott and Bailey (2000) describe the 
theory and practice of a method they call Maximal Brewer Selection, which is used at the U.S. 
National Agricultural Statistics Service (NASS). Some of the theory used in this paper is also used 
in the paper by Kott and Bailey and in Holmberg (2002). 

2 The problem and some theory 

Assume that we are planning a survey of a finite population U = { 1 , . . . , k,..., N}, and assume 
that the key parameters we want to estimate are the population totals of the unknown study 
variables y i , . . . , y g , . . . , y Q , i.e. t = (tyi,... ,tVq,... ,tyQ) ', where tVq = Efcet/2/gfc = YluVqk- A 

without replacement sampling design p(-), with first-order inclusion probabilities TT^ (k = 1 , . . . , N) 
and second-order inclusion probabilities iTki (k,l = 1 , . . . , N), will be used to select a random set 
sample s C U of size ns, and each of the population totals are to be estimated with estimators 
t = (tyi,..., tVq,..., tyq) . The design is to be determined to minimize a function / of all Q esti­
mator variances and fulfill specified restrictions, vq, made on functions g of each estimator variance 
(or variance approximation), i.e. minimize f(g(V(iyi)),g(V(iy2)),... ,g(V(iyQ))) with restrictions 
on 

(1) 

At the planning stage P auxiliary variables are available; they are denoted 
u\,..., Up,..., up, and their values upk, {p = 1 , . . . , P), are known for every element k in the 
population. For q = 1 , . . . ,Q, let xq = (x\q,... ,Xj ,.. -,xjq) be a suitable set of Jq (positive) 
auxiliary variables formed from u i , . . . , up,..., up. Each population total can then be estimated by 
a GREG estimator, which is defined as 

(2) 

Here, tVqV = J2kes Vqk/^k = J2s Vqk/^k is the well known Horvitz-Thompson or -K estimator, 

ti, = \txiq,- • • ,tXji!,... ,tXj<ij is a Jg-dimensional vector of xq totals, iXq7r is a vector of the 
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corresponding ix estimators and 

(3) 

is an estimated vector of regression coefficients, where cqk is a suitable constant. (Details of GREG 
estimation are given in Särndal, Swensson and Wretman (1992) sections 6.4-6.7.) 

Suppose that the regression model £g underlying the GREG estimator iVqT is 

(4) 

with 

(5) 

where /3q = lPiq, - • •, Pjq, • • •, (3jq) are model parameters and the values a^, ...,a^.N are considered 

known up to a constant multiplier. The anticipated variance (see Isaki and Fuller (1982)) 

is the variance of tVqT — tVq under the model and under the design. Here, an approximation to the 
anticipated variance denoted ANV(iy r) is given by 

(6) 

For a single parameter, Result 12.2.1. in Särndal et al. states that for a sampling design such 
that Ep(ns) = n, an 'optimal' design, i.e. a design that minimizes ANVq(ty r), is such that the 
first-order inclusion probabilities are given by 

(7) 

Hence, in the single parameter case we obtain an 'optimal' design by choosing ix^ oc aqk,i-e. a 
probability proportional -to-size (irps) design with aqk as a measure of size. It is sometimes assumed 
that a regression model as (4)-(5) is such that the heteroscedasticity is given by a2

k — o^uÅ (where 
a1 is a possibly unknown constant and 0 < 7. < 2 .) If that is the case, then when j q = 2, an 
'optimal' design is -rrps sampling design with Ttq(opt)k = nuqk/ Ylu uqk-

Concerning the 'optimal' properties of irps designs with oqk as a measure of size for the single 
parameter case, others than Särndal et al. have shown similar results; some important references 
are Godambe (1955), Håjek (1959), Brewer (1963), Cassel, Särndal and Wretman (1976), Rao and 
Bellhouse (1978), Wright (1983) and Rosén (2000). 

However, when Q > 2 and a^k differs (different uq or the same uq but different 7g) single vari­
able results are insufficient since they would suggest different designs for different study variables. 
Consequently, a compromise design has to be selected. The compromise should be a design that 
makes the 'best' use of the auxiliary information, considers all our important target parameters 
and gives results which do not differ too much from the individually optimal designs. Moreover, 
in contrast to the single parameter case, there is no single well-defined meaning of 'optimality' in 
the multiparameter case. Holmberg (2002) discussed three different approaches to achieve good 
compromise designs. They all have different minimization criteria, i.e. minimizing different overall 
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measures of variability, and they result in designs that in a sense are 'optimal', given the chosen 
criteria. Nevertheless, although those approaches yield designs with properties of overall 'optimal­
l y ' , that paper only outlines how 'optimal' solutions with individual restrictions such as (1), could 
be handled with nonlinear programming. 

Restrictions or specified tolerance limits, vq, for the variability of the most important survey 
estimates are commonly set. If we follow the situation outlined above, we can put restrictions on 
the individual ANVq(iyqr), e.g. ANVq(iyqr) <vq, (q = 1 , . . . ,Q). However, this is seldom practical 
in multiparameter situations due to problems with scaling. Instead, we propose that restrictions are 
set with a dimensionless measure that relates to the individual minimum ANVq(tyqT), obtainable 
by inserting expression (7) in (6). Hence, for q = 1 , . . . , Q, we use 

(8) 

where ANVqmin(iyqr) = Ylui71'q(oPt)k - l) 7 ^ a n d ANVq(iyqr)Pi is the anticipated variance of iyqr 

under a design pi(-) with nk = irPik- (We use the index i to distinguish between various designs that 
are considered at the planning stage of a survey.) Restrictions can also be set on approximations 
to the anticipated coefficients of variation or anticipated relative variances (see Kott and Bailey 
(2000) and Holmberg (2002). 

A good compromise design would be a design that fulfills the Q restrictions in equation (8) and 
minimizes some objective function that considers the overall precision of all tyqT. The arithmetic 
mean (possibly weighted) of the relative ratios ANVq{iyqr)Pi/ANVqxa\a{iyqr), which we call the 
Anticipated Overall Relative Efficiency Loss (ANOREL) is one such objective function i.e., 

(9) 

where Hq (Y^q=i Hq ~ -0 a r e importance weights attached to the Q ratios. (Hq = 1/Q for every 
q — 1 , . . . , Q when all ratios are considered equally important.) 

Remark 1 If no upper restrictions vq are set on the individual ratios (8), the minimum of ANOREL 

for a given sample size is obtained if (For a proof see Holmberg 

(2002).) 

Remark 2 The geometric mean of ANVq{tyqT)Pi/ ANVqm\n{tyqT) is another possible objective func­
tion. Then, a logaritmic transformation would mean that focus would be both on anticipated standard 
errors and anticipated variances (Kott (2002).) 

In the following sections we will illustrate our method to determine the inclusion probabilities 
of a compromise design that minimizes functions such as ANOREL under restrictions. First we 
will give a description of the optimization models and thereafter we will give a numerical example 
using an authentic Swedish business population. 
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3 Optimization Models 

The minimization of (9) under restrictions is a non-linear optimization problem where the irk : s 
are the variables that are to be determined. To avoid Greek symbols let us in this optimization 
part denote these by Zk (k = 1 , . . . , N). The optimization problem that is to be solved can then be 
written as follows: Minimize the objective function 

subject to the 2N + Q + 1 constraints 

The number of restrictions as well as the mix between linear and nonlinear restrictions makes 
it hard to find useful analytical solutions. However, if the restrictions are not set too strictly, it 
is possible to find numerical solutions. A numerical solution is sufficient for our purpose to find 
inclusion probabilities for a good compromise design. 

3.1 Convexity 

An interesting question is if the problem above is a convex problem. Such a problem has the 
property that every locally optimal solution is also a global optimal solution. This is interesting as 
most solution methods for non-linear optimization problems are such that they find locally optimal 
solutions. There are a few methods which finds global solutions but they are in practice working 
only for much smaller problems than the ones we consider in this paper. Regarding convexity we 
refer to, for example, Fletcher (1991), Chapter 9. There are two properties that guarantee that a 
problem is a convex problem The first is that the feasible region is a convex set. The second is that 
the objective function is convex (in the case of minimization). For our problem it is easy to verify 
that the feasible region in fact is a convex set. Furthermore, the objective function is a convex 
function. 

3.2 Model 

We can rewrite the optimization model by using the following coefficients 

The model can now be formulated as 

(10) 
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subject to 

(11) 

(12) 

(13) 

The value of e in constraint (13) is chosen arbitrarily small. 

3.3 A practical model 

For general values of the right hand side values of constraints (12), i.e. coefficients vq, it is difficult 
to know if the problem has a feasible solution. For practical purposes we therefore introduce slack 
variables, sq, in these constraints that are penalized with a factor S. The new formulation will be 

(14) 

subject to 

(15) 

(16) 

(17) 

The penalty parameter 5 is chosen large as compared to the coefficients afc. It is possible to 
show that the optimal solution (if one exists) to [PI] is equivalent to the optimal solution to [P2] 
if 5 is chosen large enough, see e.g. Fiacco and McCormick (1990). The reason for introducing 
the penalized slack variables is as follows. If there exist a feasible solution to [PI] then there is 
no need of the slack variables; they will all receive a value of zero to avoid a possibly very large 
contribution to the objective function due to the large value of the penalty parameter 5. On the 
other hand, if no feasible solution exists to [PI] then the slack variables in formulation [P2] will be 
used. We may note that there is no intrinsic meaning of the contribution to the objective function 
from the slack variables as they are only used as a technical device to ensure feasible solutions. 
The only, but important, difference between [P2] and [PI] is that the former formulation always 
has a feasible solution. The information from a solution based on nonzero slack variables is very 
useful in practice. Firstly, there is an indication of which constraint that causes the unfeasability of 
[PI]. Secondly, it provides values that give information of when the (original) problem will become 
feasible. 

3.4 Solution method 

There are several methods available to solve the problem. We use the subroutine package NPSOL 
Version 4.0 (Gill, Murray, Sanders and Wright (1986)). The method is a Sequential Quadratic 
Programming (SQP) method. A description can be found in e.g. Fletcher (1991), Chapter 12. The 
basic structure of the SQP method is to generate a sequence of points {z^} that converges to a 
local optimal solution. In each iteration / a new point z^+1^ is generated as 

where d̂  Ms a search-direction obtained by solving a quadratic programming subproblem and r a 
step-length. The value of the step-length is computed by performing a linesearch in the direction 
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d ^ of a merit function. There exist a range of merit functions, and the one used in NPSOL is an 
augmented Lagrangian function. Advantages with NPSOL is that it treats the lower and upper 
bounds on the variables implicitly and that linear constraints are efficiently utilized. The method is 
very robust and efficient. It is used in many commercial systems to solve hard nonlinear problems. 

3.5 A comment on other objective functions 

In section 2 we mentioned that other objective functions / than the one based on the ANOREL 
measure (equation (9)) can be of interest, e.g. approximations to anticipated relative variances 
or just anticipated variances (see Holmberg (2002).) For a weighted arithmetic mean we can use 
the models as described above with some minor adjustments. If the objective function is based on 
approximations to anticipated relative variances, i.e. minimizing 5Zg=i HqANVq{tyqr)/t^, we use 

at = Ylq=\ Hqv'qkli'qi w n e r e iq ls a planning value (a guesstimate) of tq. (If iq = 1 the objective 
function would be based on anticipated variances only.) Of course, the values vq are adjusted to 
suit the chosen objective function but otherwise the constraints are kept the same. 

If instead an objective function with a geometric mean is preferred, the problem is reformulated 
and the properties of the solution change. 

3.5.1 Logarithm 

If we use the weighted geometric mean of the ratios ANVq(iyqr) / ANVqm\a(tyqr) 

as an objective function, i.e. minimizing In G = Ylq=i Hq(lnANVq{iyqr) - \n ANVqmin(tyqr)), then 

the problem ((14)-(17)) is reformulated (using aqk = a\J Efce£/(%(^)fc ~ Vtfk) as 

(18) 

subject to 

(19) 

(20) 

(21) 

The values of vq are, of course, chosen differently as compared to problem [P2]. In this model, 
it is not possible to show that the problem is convex. Therefore, we only can guarantee that a local 
optimal solution is found. 
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4 An application to a business population 

4.1 Planning stage calculations 

We illustrate with an application on a Swedish business population, (Manufacturers of food products 
and beverages, N = 749.) The sampling design in business surveys is often an unequal probability 
sampling design, and auxiliary variables are often available both for the design and estimation 
stages. In our case, we aim to estimate the (yearly) population totals of Number of Employees 
(tyi), Turnover (ty2), and Personnel Expenses (ty3). All three are considered equally important, 
we suppose our budget allows Ep(ns) = 112 and we prefer a design pi where no ANVq{tyqT)Pi exceeds 
ANVqmin(iyqr) (q = 1, 2, 3) by more than 6%. For every k G U we have the values from the previous 
year to use as auxiliary information. Previous experience and monitoring of this population have 
indicated that the pairwise correlations are high over a two year period. If we only had one target 
parameter, e.g. total Number of Employees, it would therefore be efficient to select a design using 
previous year's Number of Employees (u\) as auxiliary variable. However, to estimate the total 
Turnover, it would be more efficient to use a design with previous year's Turnover (112) as auxiliary 
variable, and previous year's Personnel Expenses (1x3) would be best suited as auxiliary for ty3. 
Here, we consider the auxiliary vector x . = (l,uik,U2k,U3k) a n d cqk = 1 for every tVqT (q = 1, 2,3). 
The planning values of a2, are ä2

k = u n , ä\k = u^k and d\k — u^k-
By applying equation (7) we have three alternative designs p\, P2, and p^ (one for each study 

variable) where itk = ^q{opt)k a &qk (? = 1,2,3). A fourth alternative, P4, is a compromise design 

where , i.e. a design which minimizes (9) without restrictions on 

If pi is a preferred design we are through. 
By calculations based on the planning values ö k, we get the cells of table 1 which contain the 

relative values Rpiq = [ANVq(ty r)Pi/ANVqmin(iy r)] — 1 for every combination of design and key 
parameter. The mean of Rpiq for each (planning stage) design m(Rpiq) is the given in the right 
margin. (The values of ANVqmia(iyqr) were 77543, 89730 and 20262 for (q = 1,2,3).) 

Table 1: Planning stage relative efficiency losses, 100 • Rpuq, for four alternative sampling designs, 
(Ep(ns) = 112), when estimating three population totals of our business population. (Boldface 
numbers show the largest efficiency loss for each design.) 

From table 1 we see that designs p\ and p% have similar properties. With those we can expect 
good precision for tm and ty3 but poor for ty2 • With pi it is the other way around. The compromise 
design P4 is the best as a whole with the lowest mean relative efficiency loss of Rp^q = 4.4%. 
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However, design p4 is not completely satisfactory, since the predicted efficiency loss of 7.2% for ty2 

exceeds 6%. 
Hence, we solve [P2] subject to vq = 6% (q = 1,2,3) (inserting ä2

k for o2, and n = 112) and 
get a feasible solution of ir^ values (a fifth alternative, ps) such that when they are inserted into 
ANVq(iyqr), the ratios ANVq{tyqT)ps/ANVqm-m(iyqr) (q = 1, 2,3) (corresponding to the cells in table 
1) become 4.9%, 6.0% and 2.4%. (It just takes one minute to solve P2 with an ordinary desktop 
with a Pentium 500MHz processor.) With solution design ps, we expect an increased precision for 
estimating ty2 compared to design p4, but we also sacrifice expected precison for the estimators of 
tyi and ty3. In this case, however, this sacrifice is small. The value of the mean efficiency loss (i.e. 
Rps<q) is slightly larger than Rp4:q but also rounded off to 4.4%. 

4.2 Variance comparisons 

In the preceeding section we compared alternative sampling designs using the auxiliary information 
only. In a real situation we would have used the knowledge from the planning stage calculations 
and applied a suitable sampling scheme (for example the Poisson nps or Pareto nps (see Rosén 
(1997)) to implement design p$. However, it is not certain that ps is the best of our design when 
it comes to practice. The model assumptions made at the planning stage will deviate more or 
less from factual conditions, and therefore it is of interest to compare our alternative designs by 
calculating estimator variances. 

Suppose we use the Poisson sampling scheme with TTk according to our designs p\,... ,ps and 
suppose we use the GREG estimator, iyqr, as mentioned earlier, with the auxiliary vector x k = 
(1, iijfc, U2fc,i£3fc) and cqk = 1 for every q = 1,2,3. Then the Taylor expansion variance of tyqT is 

where Eqk = Vk — xqfcBg (k = 1 , . . . , N) are population fit residuals, with 

B g = (l^(y xgfcXgfcJ Ylu VqkX-qk-, a finite population regression coefficient. 

For every parameter ty<j and every design pi, VT,PO)q(tyqr)vt ( = l>--->6) is calculated (p6 is 
Bernoulli sampling with IT k = n/N, which is used here as a benchmark design.) One of our designs 

, - 6. 
will give us the smallest estimator variance, i.e. Vq{tyqT) = m\nVT{po)q{tyqr)Pi for every q. Given 
Eqk and given the various design alternatives at the planning stage, Vq(tyqT) represents the 'best' 
obtainable result for every parameter separately. Dividing VT{PO)g(tyqr)Pi by Vq(tyqT) parameter by 
parameter we get a measure comparable to the one used in table 1 and we can study the effect of 
different choices of design. 

Table 2 illustrates the losses in efficiency due to design choice, in terms of relative estimator 
variances. (The values of Vq{iyqT) are 237202, 472733 and 15922 for q = 1,2,3 respectively.) 

The general pattern of table 2 is similar to that of pi to p\ in table 1. The differences are that 
P3 is the best choice for two of the three parameters while p\ never is the best. Both are poor 
when the target parameter is total Turnover ty2. Despite that all auxiliary variables are used in 
the estimators, strategies using the Bernoulli design (pe) are very poor, relatively speaking. This 
indicates that using auxiliary information in the design as well as the estimator pays off here. If 
we study the mean efficiency loss, the designs p4 and P5 are the best choices (6.8% and 6.4% mean 
efficiency loss respectively.) Hence, from a multiparameter perspective the choice of ps is good. 
Our aim of at most 6% loss for each parameter is not met (which is not to be fully expected) but 
it still is the best compromise design. 
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Table 2: Estimated relative efficiency losses, for six alternative Poisson 

sampling designs, (Ep(na) — 112), when estimating three population totals. (Boldface numbers 
show the largest efficiency loss for each design.) 

The same conclusion is drawn from similar studies on other business populations in various 
branches of the Swedish manufacutring industry. For sake of space we choose not to present those 
studies here. 

5 Summary 

In large survey organizations that repeatedly do business surveys it is common to have access to 
strong auxiliary information. Often this information is used both in the design as well as in the 
estimators. However, when the auxiliary information is used in the design it is often done so in a 
simplified fashion, which does not take into consideration the fact that the different study variables 
have different relations to the auxiliary variables. The method we present here gives the survey 
statistician a more flexible and efficient way to use his or her available auxiliary information in 
the design. Our method involves non-linear programming at the planning stage of the survey to 
determine the inclusion probabilities that for several study variables minimizes various functions of 
anticipated estimator variances. The minimization is done subject to constraints on the functions 
of the individual estimator variances. The statistician can choose these constraints in order to 
find the design that simultaneously fulfills the precision requirements for several parameters of the 
survey. 

We illustrated our method with an example from an authentic Swedish business population. The 
example with various design alternatives for this population and the estimator variance calculations 
later illustrate that, although we use strong auxiliary information in the estimators, it matters how 
we use the auxiliary information in the design. The numerical calculations require very little time 
even on an ordinary desktop. In the planning process, the statistician can easily try different 
solutions with different sets of constraints to find a satisfactory design. The tool we developed also 
computes design diagnostics such as table 1. This gives easy access to valuable information for the 
final design choice. 
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