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On the Choice of Sampling Design in Business Surveys
with Several Important Study Variables

Anders Holmberg, Patrik Flisberg and Mikael Ronngqvist

ABSTRACT

The typical business survey has several study variables and several target parameters. To
improve the precision of the estimators, it normally also involves several auxiliary
variables that can be used in the design as well as in the estimators. Different auxiliary
variables may have varying strength for different target parameters, and the design that is
best for one parameter may not be best for another. With multiple target parameters and
multiple requirements on precision, the practising statistician then must select a
compromise design. In this paper, we present methods to obtain good compromise
designs. Our approach yields unequal first order inclusion probabilities, which can be
applied with both fixed size and random size sampling schemes and it offers a flexible
use of auxiliary variables in the design. An example from a real Swedish business
population is given.

Aim with this report

This report is a follow up of an earlier R&D report in this series (R&D report 2002:1.) Besides extended
theory, it contains an application on Swedish Business data for an approach that was only outlined in the
earlier work. This paper is a part of a joint work between personnel at the R&D department at Statistics
Sweden and the Division of Optimization at Linkoping Institute of Technology.
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On the Choice of Optimal Sampling Design in Business Surveys with
Several Important Study Variables

Anders Holmberg? Patrik Flisberg and Mikael Ronnqvist!
October 28, 2002

Abstract

The typical business survey has several study variables and several target parameters. To
improve the precision of the estimators, it normally also involves several auxiliary variables that
can be used in the design as well as in the estimators. Different auxiliary variables may have
varying strength for different target parameters, and the design that is best for one parameter
may not be best for another. With multiple target parameters and multiple requirements on
precision, the practising statistician then must select a compromise design. In this paper, we
present methods to obtain good compromise designs. Our approach yields unequal first order
inclusion probabilities, which can be applied with both fixed size and random size sampling
schemes and it offers a flexible use of auxiliary variables in the design. An example from a real
Swedish business population is given.

MCS 2000 subject classifications: 62D05
Key Words and Phrases: Multiparameter surveys, Optimal sampling designs, Unequal Proba-
bility Sampling, Non-linear programming.

1 Introduction

A typical sample survey is concerned with estimating a large number of parameters of a finite
population. The most important of these parameters, say 8 = (6,,...,60;,...,8;) , form the basis
for planning the survey. The task of the survey statistician is then to find an efficient combination
of sampling design p(-), and estimator vector 0= (91, s ,91)' (efficient strategy) i.e., such
that the final choice results in ‘small’ mean square error for each estimator ;. If, as frequently is
the case in large survey organizations, there is auxiliary information available, the statistician can
use this information to his advantage and thereby obtain a highly efficient strategy. The auxiliary
information may be used in the choice of design as well as in the choice of estimator. However,
whereas the auxiliary information for the estimators may be individually selected and different for
different estimators, the auxiliary information used in the design is shared, and will affect all the
parameter estimates. Before implementing a design that uses auxiliary information, the statistician
must therefore closely examine its effects on all his or her key estimators. The design that is optimal
for one target parameter may be far from optimal for another. Therefore, with a fixed amount of
resources, it can sometimes be hard to find a design that meets the desired levels of precision for
all important target parameters simultaneously.
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A well-known example of this problem appears for multi-item optimal allocation in stratified
sampling. The solution is one in nonlinear programming (Bethel (1989), Cochran (1977) section
5A3-5A4). In this paper, we are concerned with a similar problem. However, instead of determining
the best sample allocation between strata, we aim to determine the first order inclusion probabilities

k (k=1,...,N) so as to get a design which can qualify as an ‘optimal’ compromise in meeting
desired levels of precision for multiple targets; i.e. we aim for a design where the estimator variances
deviate as little as possible from the estimator variances resulting from single variable ‘optimal’
designs. Our approach is general in the sense that, when the 7g:s have been determined, they
can directly be applied to both fixed size sampling schemes and random size sampling schemes. It
covers regression estimators such as the family of (generalized regression) GREG estimators and
the so called ‘optimal regression estimator’ (see Rao (1994) and Montanari (1998).) The approach
also allows different auxiliary variables to be considered in combination with the different study
variables in the design, which means a high degree of flexibility in the use of the auxiliary variables.
Related work in this area having similar objectives have been made by Sigman and Monsour
(1995), Saavedra (1999), Kott and Bailey (2000) and Holmberg (2002). Sigman and Monsour
(1995) sketched a procedure using nonlinear programming that is similar to the one described here
for Poisson mps sampling and the Horvitz-Thompson estimator. Saavedra (1999) applied these
ideas using the algorithm by Chromy (1987) to determine probabilities to be used for Pareto mps
sampling in a price and volume petroleum product survey. Kott and Bailey (2000) describe the
theory and practice of a method they call Mazimal Brewer Selection, which is used at the U.S.
National Agricultural Statistics Service (NASS). Some of the theory used in this paper is also used
in the paper by Kott and Bailey and in Holmberg (2002).

2 The problem and some theory

Assume that we are planning a survey of a finite population U = {1,...,k,..., N}, and assume
that the key parameters we want to estimate are the population totals of the unknown study
variables y1,...,¥q,---,¥Q, Le. t=(ty,... . A ,tyQ) ', where ty, = D pevYgk = Dy Ygk- A
without replacement sampling design p(-), with first-order inclusion probabilities ¢ (k= 1,..., N)
and second-order inclusion probabilities 7y, (k,l = 1,...,N), will be used to select a random set
sample s C U of size s, and each of the population totals are to be estimated with estimators
t= ( yir-- tyq, . tyQ) The design is to be determined to minimize a function f of all @ esti-
mator variances and fulfill specified restrictions, v, made on functions g of each estimator variance
(or variance approximation), i.e. minimize f(g(V (£y,)),9(V (£y,)),- - - ,g(V(ny))) with restrictions
on

9(V(ty,)) vy, (@=1,--.,Q) (1)

At the planning stage P auxiliary variables are available; they are denoted
Ul,...,Up,...,up, and their values Upk, (p = 1,...,P), are known for every element k in the
population. For ¢ = 1,...,Q, let x = (xlq,...,:ch,. ..,a:Jq) be a suitable set of J; (positive)
auxiliary variables formed from w,, ..., up,...,up. Each population total can then be estimated by
a GREG estimator, which is deﬁned as

tygr = ty,m + (tz, — to,r) By (2)

Here, ty.x = Y pcsYak/Tk = 3. Yqk/mk is the well known Horvitz-Thompson or 7 estimator,

te, = (tzlq,...,tzjq,...,tz Jq) is a J,~-dimensional vector of x4 totals, fzq,r is a vector of the



corresponding m estimators and
PN |
= (3] y e g
kT ke kT k
is an estimated vector of regression coefficients, where ¢y, is a suitable constant. (Details of GREG

estimation are given in Sarndal, Swensson and Wretman (1992) sections 6.4-6.7.)
Suppose that the regression model £, underlying the GREG estimator ty o 18

Y = X;kﬂq + Eqk (4)
with
Eg, (eqk) =0
Ve, (eqe) = 03 (5)
Ee (cqueq) =0; k #1
where 3, = (,qu, ... ,/)’jq, ceey BJq> are model parameters and the values agl, cers UEN are considered

known up to a constant multiplier. The anticipated variance (see Isaki and Fuller (1982))
EEqu[(iqu - tyq)2] - [EEQEP(tquT - tyq)]2

is the variance of t,, — t,, under the model and under the design. Here, an approximation to the
anticipated variance denoted AN V(fyqr) is given by

ANVy(tyr) =Y (gt = Dog (6)

For a single parameter, Result 12.2.1. in Sirndal et al. states that for a sampling design such
that Ep(ns) = n, an ‘optimal’ design, i.e. a design that minimizes ANV,(Zy,r), is such that the
first-order inclusion probabilities are given by

Tk = Tg(opt)k = N0qk/ ZU O gk (7)

Hence, in the single parameter case we obtain an ‘optimal’ design by choosing 7y oc g ie. a
probability proportional -to-size (7ps) design with o4 as a measure of size. It is sometimes assumed
that a regression model as (4)-(5) is such that the heteroscedasticity is given by O'gk = aguz,‘; (where
ag is a possibly unknown constant and 0 < v, < 2 .) If that is the case, then when vy, = 2, an
‘optimal’ design is mps sampling design with 7y(opeyk = nUgk/ 21 Ygk-

Concerning the ‘optimal’ properties of mps designs with o4 as a measure of size for the single
parameter case, others than Siarndal et al. have shown similar results; some important references
are Godambe (1955), Hajek (1959), Brewer (1963), Cassel, Sirndal and Wretman (1976), Rao and
Bellhouse (1978), Wright (1983) and Rosén (2000).

However, when @ > 2 and ng differs (different u, or the same u, but different +,) single vari-
able results are insufficient since they would suggest different designs for different study variables.
Consequently, a compromise design has to be selected. The compromise should be a design that
makes the ’best’ use of the auxiliary information, considers all our important target parameters
and gives results which do not differ too much from the individually optimal designs. Moreover,
in contrast to the single parameter case, there is no single well-defined meaning of ‘optimality’ in
the multiparameter case. Holmberg (2002) discussed three different approaches to achieve good
compromise designs. They all have different minimization criteria, i.e. minimizing different overall



measures of variability, and they result in designs that in a sense are ‘optimal’, given the chosen
criteria. Nevertheless, although those approaches yield designs with properties of overall ‘optimal-
ity’, that paper only outlines how ‘optimal’ solutions with individual restrictions such as (1), could
be handled with nonlinear programming.

Restrictions or specified tolerance limits, v, for the variability of the most important survey
estimates are commonly set. If we follow the situation outlined above, we can put restrictions on
the individual ANX/;(fyqr), e.g. ANVq(tquT) <wg (g=1,...,Q). However, this is seldom practical
in multiparameter situations due to problems with scaling. Instead, we propose that restrictions are
set with a dimensionless measure that relates to the individual minimum ANV,(£, ), obtainable
by inserting expression (7) in (6). Hence, for g =1,...,Q, we use

ANV, (t,.»
( yq )Zh S Uq (8)
ANV;] mm( yqr)

where ANquin(fyqr) = ZU(’/Tq(opt)k ~1)o? ok and ANV( vor)p, is the anticipated variance of tyqr
under a design p;(-) with mx = 7p,,x. (We use the index 4 to distinguish between various designs that
are considered at the planning stage of a survey.) Restrictions can also be set on approximations
to the anticipated coefficients of variation or anticipated relative variances (see Kott and Bailey
(2000) and Holmberg (2002).

A good compromise design would be a design that fulfills the @) restrictions in equation (8) and
minimizes some objective function that considers the overall precision of all fqu. The arithmetic
mean (possibly weighted) of the relative ratios ANV,(ty,r)p;/ANVgmin(fy,r), which we call the
Anticipated Overall Relative Efficiency Loss (ANOREL) is one such objective function i.e.,

ANV;] t!/q")%

ANV min(fy,r) ©

ANOREL = Z Hy—— Lk

where H, Zq_ ¢ = 1) are importance weights attached to the @ ratios. (Hy; = 1/Q for every
g=1,...,Q when all ratios are considered equally important.)

Remark 1 If no upper restrictions vq are set on the individual ratios (8), the minimum of ANOREL

0.2
gk . (For a proof see Holmber
(120(7r q{opt)k 1)‘721: ( P f J

for a given sample size is obtained if 7 \/Z
(2002).)

Remark 2 The geometric mean of ANVy(ty.r)p, /AN Vgmin(ty,r) is another possible objective func-
tion. Then, a logaritmic transformation would mean that focus would be both on anticipated standard
errors and anticipated variances (Kott (2002).)

In the following sections we will illustrate our method to determine the inclusion probabilities
of a compromise design that minimizes functions such as ANOREL under restrictions. First we
will give a description of the optimization models and thereafter we will give a numerical example
using an authentic Swedish business population.



3 Optimization Models

The minimization of (9) under restrictions is a non-linear optimization problem where the 7y : s
are the variables that are to be determined. To avoid Greek symbols let us in this optimization
part denote these by 2, (k=1,..., N). The optimization problem that is to be solved can then be
written as follows: Minimize the objective function

2

Q
f2) = ;Hq 2y~

atoptyk ~ D)9gk

subject to the 2V + @Q + 1 constraints

0 < <1 k=1,...,N
90(z) = Uzk“'n=0
1 oo
94(z) = Zu(z; —-1) 5 <v% ¢=1...,Q

The number of restrictions as well as the mix between linear and nonlinear restrictions makes
it hard to find useful analytical solutions. However, if the restrictions are not set too strictly, it
is possible to find numerical solutions. A numerical solution is sufficient for our purpose to find
inclusion probabilities for a good compromise design.

3.1 Convexity

An interesting question is if the problem above is a convex problem. Such a problem has the
property that every locally optimal solution is also a global optimal solution. This is interesting as
most solution methods for non-linear optimization problems are such that they find locally optimal
solutions. There are a few methods which finds global solutions but they are in practice working
only for much smaller problems than the ones we consider in this paper. Regarding convexity we
refer to, for example, Fletcher (1991), Chapter 9. There are two properties that guarantee that a
problem is a convex problem The first is that the feasible region is a convex set. The second is that
the objective function is convex (in the case of minimization). For our problem it is easy to verify
that the feasible region in fact is a convex set. Furthermore, the objective function is a convex
function.

3.2 Model

We can rewrite the optimization model by using the following coefficients

Q 2

Ik
ar = Hq — et
; ZU(Fq(})pt)k - l)ng
2
o
ZU(Fq(opt)k - l)aqk
The model can now be formulated as
[P1] min f(z) =S par(zz! —1) (10)



subject to

ZU Zr = TN (11)
Zquk:(zk—l - 1) S qu q= 17"'$Q (12)
e <z < 1, keU (13)

The value of € in constraint (13) is chosen arbitrarily small.

3.3 A practical model

For general values of the right hand side values of constraints (12), i.e. coefficients vy, it is difficult
to know if the problem has a feasible solution. For practical purposes we therefore introduce slack
variables, sq, in these constraints that are penalized with a factor §. The new formulation will be

[P2] min f(z) =Y par(z =) +63 7 s, (14)

subject to

Dy = (15)
Zubqk(zk_l .—1) — 5q < Vg, 9= 17"'aQ (16)
€ S 2k S 17 kelU (]‘7)

The penalty parameter § is chosen large as compared to the coeflicients ax. It is possible to
show that the optimal solution (if one exists) to [P1] is equivalent to the optimal solution to [P2]
if § is chosen large enough, see e.g. Fiacco and McCormick (1990). The reason for introducing
the penalized slack variables is as follows. If there exist a feasible solution to [P1] then there is
no need of the slack variables; they will all receive a value of zero to avoid a possibly very large
contribution to the objective function due to the large value of the penalty parameter 6. On the
other hand, if no feasible solution exists to [P1] then the slack variables in formulation [P2] will be
used. We may note that there is no intrinsic meaning of the contribution to the objective function
from the slack variables as they are only used as a technical device to ensure feasible solutions.
The only, but important, difference between [P2] and [P1] is that the former formulation always
has a feasible solution. The information from a solution based on nonzero slack variables is very
useful in practice. Firstly, there is an indication of which constraint that causes the unfeasability of
[P1]. Secondly, it provides values that give information of when the (original) problem will become
feasible.

3.4 Solution method

There are several methods available to solve the problem. We use the subroutine package NPSOL
Version 4.0 (Gill, Murray, Sanders and Wright (1986)). The method is a Sequential Quadratic
Programming (SQP) method. A description can be found in e.g. Fletcher (1991), Chapter 12. The
basic structure of the SQP method is to generate a sequence of points {z()} that converges to a
local optimal solution. In each iteration ! a new point z(+1) is generated as

20+ = 50 L 2 0q®

where d® is a search-direction obtained by solving a quadratic programming subproblem and r a
step-length. The value of the step-length is computed by performing a linesearch in the direction



d® of a merit function. There exist a range of merit functions, and the one used in NPSOL is an
augmented Lagrangian function. Advantages with NPSOL is that it treats the lower and upper
bounds on the variables implicitly and that linear constraints are efficiently utilized. The method is
very robust and efficient. It is used in many commercial systems to solve hard nonlinear problems.

3.5 A comment on other objective functions

In section 2 we mentioned that other objective functions f than the one based on the ANOREL
measure (equation (9)) can be of interest, e.g. approximations to anticipated relative variances
or just anticipated variances (see Holmberg (2002).) For a weighted arithmetic mean we can use
the models as described above with some minor adjustments. If the objective function is based on
approximations to anticipated relative variances, i.e. minimizing 25:1 H,ANV(ty,r)/t2, we use
ar = qu=1 Hyo2, /t2, where t, is a planning value (a guesstimate) of ty. (If {5 = 1 the objective
function would be based on anticipated variances only.) Of course, the values v, are adjusted to
suit the chosen objective function but otherwise the constraints are kept the same.

If instead an objective function with a geometric mean is preferred, the problem is reformulated

and the properties of the solution change.

3.5.1 Logarithm
If we use the weighted geometric mean of the ratios AN Vq(fy o) ANV min (fyqr)

G= H AN‘/:I(iyqr) .
B AN‘/Q min(fyqr)

g=1

as an objective function, i.e. minimizing InG = Z?zl Hy(In ANV4(ty,r) — In ANVgmin(ty,r)), then

the problem ((14)-(17)) is reformulated (using agx = ogk/ ZkeU(Trq—(ipt)k - l)agk) as

[P3] min f(z) = Y9 Hyln(Yp ag(zit — 1) +0 52, 5 (18)
subject to
Zyzk = n (19)
ln(zubqk(z,;l—l))~sq < vy ¢g=1,...,Q (20)
e <z < 1, keU (21)

The values of v, are, of course, chosen differently as compared to problem [P2]. In this model,
it is not possible to show that the problem is convex. Therefore, we only can guarantee that a local
optimal solution is found.



4 An application to a business population

4.1 Planning stage calculations

We illustrate with an application on a Swedish business population, (Manufacturers of food products
and beverages, N = 749.) The sampling design in business surveys is often an unequal probability
sampling design, and auxiliary variables are often available both for the design and estimation
stages. In our case, we aim to estimate the (yearly) population totals of Number of Employees
(ty,), Turnover (ty,), and Personnel Expenses (ty,). All three are considered equally important,
we suppose our budget allows Ej,(n,) = 112 and we prefer a design p; where no AN I/;(fyq,)pi exceeds
ANV min (fyq,) (g = 1,2,3) by more than 6%. For every k € U we have the values from the previous
year to use as auxiliary information. Previous experience and monitoring of this population have
indicated that the pairwise correlations are high over a two year period. If we only had one target
parameter, e.g. total Number of Employees, it would therefore be efficient to select a design using
previous year’s Number of Employees (u;) as auxiliary variable. However, to estimate the total
Turnover, it would be more efficient to use a design with previous year’s Turnover (uy) as auxiliary
variable, and previous year’s Personnel Ezpenses (uz) would be best suited as auxiliary for t,.
Here, we consider the auxiliary vector x;k = (1, w1k, ugk,u3x) and cqr = 1 for every fyq, (¢=1,2,3).
The planning values of agk are 5%,6 = Uik, 6%k = ugg and 5§k = Ugk.

By applying equation (7) we have three alternative designs pi, p2, and p3 (one for each study
variable) where T, = Tpiyk X Gar (@ = 1,2,3). A fourth alternative, py, is a compromise design

52
4k —57, 1. a design which minimizes (9) without restrictions on
q(eopt)k gk
ANV, (ty,r)/ANV, min(fyqr) (see remark 1.) If py is a preferred design we are through.

By calculations based on the planning values &gk, we get the cells of table 1 which contain the

relative values Rp,q = [ANVy(fy,r)p:/ANVymin(ty,r)] — 1 for every combination of design and key

parameter. The mean of R,,, for each (planning stage) design m(R,,,) is the given in the right
margin. (The values of ANV, min(fyqr) were 77543, 89730 and 20262 for (¢ = 1,2, 3).)

where 7y « \/Zqul H, S

Table 1: Planning stage relative efficiency losses, 100 - éphq, for four alternative sampling designs,
(Ep(ns) = 112), when estimating three population totals of our business population. (Boldface
numbers show the largest efficiency loss for each design.)

Parameters
Design approach ty, by, tys m(Ryq) (%)
p1: ‘Optimal’ for t,, 0 24.3 3.5 9.3
p2: ‘Optimal’ for t,, 24.5 0 19.1 14.5
p3: ‘Optimal’ for t,, 33164 0 6.5
pa: ‘Optimal’ for m(R,, ) | 4.0 7.2 1.9 4.4

From table 1 we see that designs p; and p3 have similar properties. With those we can expect
good precision for ¢y, and t,; but poor for t,2. With ps it is the other way around. The compromise
design p4 is the best as a whole with the lowest mean relative efficiency loss of Rp, 4 = 4.4%.



However, design p4 is not completely satisfactory, since the predicted efficiency loss of 7.2% for ty2
exceeds 6%.

Hence, we solve [P2] subject to v, = 6% (¢ = 1,2, 3) (inserting G2 ar for o? 2 and n = 112) and
get a feasible solution of 7 values (a fifth alternative, ps) such that When they are inserted into
ANV,(ty,r), the ratios ANV, (fy,r)ps JANVgmin(ty,r) (¢ =1,2,3) (corresponding to the cells in table
1) become 4.9%, 6.0% and 2.4%. (It just takes one minute to solve P2 with an ordinary desktop
with a Pentium 500MHz processor.) With solution design ps, we expect an increased precision for
estimating t,o compared to design p4, but we also sacrifice expected precison for the estimators of
ty1 and ty3. In this case, however, this sacrifice is small. The value of the mean efficiency loss (i.e.
Rp5 q) is slightly larger than Rp4 ¢ but also rounded off to 4.4%.

4.2 Variance comparisons

In the preceeding section we compared alternative sampling designs using the auxiliary information
only. In a real situation we would have used the knowledge from the planning stage calculations
and applied a suitable sampling scheme (for example the Poisson 7ps or Pareto 7ps (see Rosén
(1997)) to implement design ps. However, it is not certain that ps is the best of our design when
it comes to practice. The model assumptions made at the planning stage will deviate more or
less from factual conditions, and therefore it is of interest to compare our alternative designs by
calculating estimator variances.

Suppose we use the Poisson sampling scheme with 7 according to our designs py,... 'Ps. and
suppose we use the GREG estimator, ty -, as mentioned earlier, with the auxiliary vector x. ok =

(1, u1k, ok, uzk) and cqr = 1 for every g = 1,2, 3. Then the Taylor expansion variance of ty o7 18
; 1 2
VT(PO)(tqu) = ZU (ﬂ.k 1) Eqk

where Egx = yr — x;kBq (k=1,...,N) are population fit residuals, with

4 —1 ’ . . .
B, = (ZU ququ) YU YgkX gy, a finite population regression coefficient.

For every parameter t, and every design pi, V7,0, (ty,r)p, (1 =1,...,6) is calculated (ps is
Bernoulli sampling with 7 = n/N, which is used here as a benchmark design.) One of our designs

'on 6 - .
will give us the smallest estimator variance, i.e. V,(ty,r) = min VT poy, (tyqr)p: for every q. Given

Eq and given the various design alternatives at the plannlng stage, V, (ty r) represents the ’best’
obtainable result for every parameter separately. Dividing V7., q(tyq )pi by V;] (ty,r) parameter by
parameter we get a measure comparable to the one used in table 1 and we can study the effect of
different choices of design.

Table 2 illustrates the losses in efficiency due to design choice, in terms of relative estimator
variances. (The values of Vq'(fyqr) are 237202, 472733 and 15922 for ¢ = 1, 2, 3 respectively.)

The general pattern of table 2 is similar to that of p; to ps in table 1. The differences are that
p3 is the best choice for two of the three parameters while p; never is the best. Both are poor
when the target parameter is total Turnover t,,. Despite that all auxiliary variables are used in
the estimators, strategies using the Bernoulli design (pg) are very poor, relatively speaking. This
indicates that using auxiliary information in the design as well as the estimator pays off here. If
we study the mean efficiency loss, the designs ps and ps are the best choices (6.8% and 6.4% mean
efficiency loss respectively.) Hence, from a multiparameter perspective the choice of ps is good.
Our aim of at most 6% loss for each parameter is not met (which is not to be fully expected) but
it still is the best compromise design.



. . . VT PO (iqu)Pz . . .
Table 2: Estimated relative efficiency losses, 100(——(——)—-——‘/,(‘2 ) — 1), for six alternative Poisson
q(tygr
sampling designs, (Ep(ns) = 112), when estimating three population totals. (Boldface numbers

show the largest efficiency loss for each design.)

Parameters

Design | t,, tyo ty;  Mean efficiency loss (%)
P1 11.2 41.3 3.2 18.6

P2 19.7 0 12.4 10.7

D3 0 34.2 0 114

D4 50 15.2 0.3 6.8

D5 5.6 12.9 0.6 6.4

D6 171.3 2124 217.9 200.5

The same conclusion is drawn from similar studies on other business populations in various
branches of the Swedish manufacutring industry. For sake of space we choose not to present those
studies here.

5 Summary

In large survey organizations that repeatedly do business surveys it is common to have access to
strong auxiliary information. Often this information is used both in the design as well as in the
estimators. However, when the auxiliary information is used in the design it is often done so in a
simplified fashion, which does not take into consideration the fact that the different study variables
have different relations to the auxiliary variables. The method we present here gives the survey
statistician a more flexible and efficient way to use his or her available auxiliary information in
the design. Our method involves non-linear programming at the planning stage of the survey to
determine the inclusion probabilities that for several study variables minimizes various functions of
anticipated estimator variances. The minimization is done subject to constraints on the functions
of the individual estimator variances. The statistician can choose these constraints in order to
find the design that simultaneously fulfills the precision requirements for several parameters of the
survey.

We illustrated our method with an example from an authentic Swedish business population. The
example with various design alternatives for this population and the estimator variance calculations
later illustrate that, although we use strong auxiliary information in the estimators, it matters how
we use the auxiliary information in the design. The numerical calculations require very little time
even on an ordinary desktop. In the planning process, the statistician can easily try different
solutions with different sets of constraints to find a satisfactory design. The tool we developed also
computes design diagnostics such as table 1. This gives easy access to valuable information for the
final design choice.
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