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Summary 

A model for studying the effects of nonresponse in competing risks 

analysis is proposed. The response probabilities are assumed to 

depend on whether, and from what cause, decrement has occurred 

during an observation period with right censoring. The model has 

been used to study nonresponse effects on estimates of transition 

intensities in the 1981 Swedish Fertility Survey. Some empirical 

results from that survey are presented to give realistic estimates of 

the parameters in the model. 

The effects of nonresponse on technical bias, variance, and variance 

estimators of occurrence exposure rates (estimated intensities) are 

investigated by means of the model. It is shown that the technical 

bias (i.e., the bias due to ratio estimation) is often insignificant 

compared with the standard error, which in turn can often be 

estimated in an approximately unbiased manner by the usual 

variance estimator even in the nonresponse situation. 

The nonresponse bias of estimates of transition intensities and 

transition probabilities is also investigated. It is shown that the 

nonresponse bias may be very large if the response probabilities for 

decrements and survivors differ greatly. Two methods to adjust for 

the nonresponse bias are investigated. Both require accurate 

estimates of the ratios between the response probabilities for 

decrements and survivors. If this requirement is not met, the 

adjustment methods may in fact increase the nonresponse bias. 
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1. Introduction 

Most surveys suffer from nonresponse. This affects estimates not 

only by reducing the number of observations and thereby increasing 

the random error, but also by introducing bias in the estimates. The 

bias arises from the fact that the response behavior often is 

associated with the variables under study. The only certain way to 

avoid nonresponse bias is to make sure that all sampled units (or 

subsampled units from an original nonresponse group) respond. This 

is seldom possible in practice due to budget and time constraints, 

persistent refusals, etc. The effects of nonresponse and the costs of 

reducing it must also be balanced against other sources of error in 

a survey. Therefore, some nonresponse must usually be accepted. 

Nonresponse effects (and adjustment methods) can sometimes be 

studied empirically by comparing estimates based on the responses 

obtained with corresponding estimates based on the whole target 

sample, provided data are available from an external source. This 

has been possible for the 1981 Swedish Fertility Survey, where 

information from the Swedish Fertility Register was used to study 

nonresponse effects on estimates of transition intensities, transition 

probabilities, test statistics, etc (Lyberg, 1983). The register, which 

has been described by Johansson and Finnäs (1983) and by Quist 

(1990), contains information about fertility and nuptiality for all 

Swedish women born in 1926-60. 

Such empirical studies have limitations, however. Their results 

concern specific variables for which there is accurate information 

in the register. These variables may not be the most important ones 

in the survey, and the results may not be valid for the main 

survey variables. Thus, empirical studies should be carried out 



- 4 -

within the framework of a theoretical model. Such a model may make 

possible inference beyond the empirical findings. A theoretical model 

is also a necessary means during the design phase for the effective 

allocation of resources. 

This paper presents the theoretical model used in the nonresponse 

study of the 1981 Swedish Fertility Survey. The model concerns an 

event history analysis where the transition behavior can be 

described by a competing risks model and the response behavior is 

assumed to depend on the outcome of the individual life history. 

A competing risks model is a Markov chain with a continuous time 

parameter, one transient state (State 0) and some (finite) number K 

of absorbing states. (More complex hierarchical Markov chain models 

for event history analyses can often be decomposed into a number 

of sequential competing risks models. See, for instance, the analyses 

performed on the Swedish Fertility Register and the 1981 Swedish 

Fertility Survey by Quist and Rennermalm (1985).) The transition 

intensities of a competing risks model are defined as 

where P.(t,t+h) is the transition probability from State 0 to state j 

during the time interval (t,t+h) among individuals who still belong 

to State 0 at time t. In this paper we assume that the transition 

intensities are constant, i.e., u.(t) = u, for all relevant t, and 

j = l , 2 K. 

Central rates (occurrence/exposure rates) are maximum likelihood 

estimators of the constant transition intensities u.. Their asymptotic 

properties are well.known, see, e.g., Hoem and Funck Jensen (1982, 
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Chapter 4.1). Some attention has also been paid to their small-

sample properties (Beyer et al., 1976; Vaeth, 1977; and Shou and 

Vaeth, 1980). So far almost nothing is known about the effects of 

nonrespon-se on central rates used as estimates of transition 

intensities. 

In Section 2 I start with a short discussion of different approaches 

to model nonresponse and present the model used in this paper. 

This model describes how the life-history segments of the 

respondents (i.e., the histories actually observed) are generated by 

a probabilistic response mechanism. In Section 3 I present some 

results from the empirical nonresponse study of the 1981 Swedish 

Fertility Survey in order to give an impression of what estimates 

are realistic for the response probabilities defined in the theoretical 

model. 

In Section 4 I return to the theoretical model and investigate the 

nonresponse effects on the technical bias, on the variance and on 

the usual variance estimator of central rates used as estimators of 

transition intensities. In the nonresponse situation, those central 

rates may be correlated and the usual variance estimator may be 

biased (even asymptotically). Most of the time, however, the 

correlation and bias are very small. Nevertheless, I present a 

consistent variance-covariance estimator to be used in cases where 

there is any doubt. The technical bias behaves in the same manner 

in the nonresponse situation as in the complete response situation, 

i.e., it can usually be ignored. 

The nonresponse bias is investigated in Section 5. The bias can be 

expressed as a function of the ratios between the response 

probabilities for the decrements (from a specific cause) and for the 

survivors, as defined in the nonresponse model. If these ratios 

differ greatly from 1, the nonresponse bias of central rates becomes 
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very large compared with the estimated transition intensities and 

compared with the standard errors of the estimates. When transition 

and survival probabilities are concerned, the nonresponse bias seems 

to be smaller if the probabilities are estimated via the estimates of 

transition intensities rather than by the proportions of decrements 

and survivors. 

In Section 6 I investigate two methods of adjusting for the 

nonresponse bias. Both methods require estimates of the ratios 

between the response probabilities for the decrements and survivors. 

If these estimates are not accurate, the adjustment methods may 

increase the nonresponse bias. Other adjustment methods are 

discussed briefly. 
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2 The Nonresponse Model 

2.1 Nonresponse modeling 

Before presenting the nonresponse model used in this essay I give a 

brief review of nonresponse modeling as presented in the literature. 

The review is far from comprehensive. The purpose is only to 

illustrate the variety of approaches to model nonresponse that have 

been applied so far. 

The presentation emphasizes unit (or total) nonresponse, although 

there is no principal difference between unit and item (partial) 

nonresponse. In almost every survey there exists some information 

in the frame for all units in the sample, including the 

nonrespondents. Such information could be used to model and treat 

unit nonresponse in the same way as item nonresponse. In practice, 

however, unit nonresponse is often modeled and treated globally for 

all missing items while item nonresponse is treated by item-specific 

direct or indirect imputation (or classified as "no answer" in 

tabulations and analyses). In their review of methods for treating 

missing survey data, Kalton and Kasprzyk (1986) show that nearly 

all imputation methods presented can be described as relying on 

special cases of a general regression model of the relation between 

the variable with missing data and some auxiliary variables. 

Survey statisticians have worked with nonresponse problems for 

decades. In 1977 the Panel of Incomplete Data was established by 

the US Committee on National Statistics. The panel's work was 

published in three volumes of which the third consists of 

proceedings of the 1979 Symposium on Incomplete Data (Panel on 

Incomplete Data, 1983). The panel did not end up with a unified 

theory for treating and modeling nonresponse. On the contrary, the 
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volumes present a wide spectrum of viewpoints reflecting the 

practitioners' informal methods to provide reasonably accurate 

statistics to a reasonable cost and the theoreticians' efforts to 

make inference based on parametric models and maximum-likelihood 

estimation or on extension of the randomization theory. There is an 

agreement, however, that the treatment of nonresponse relies on 

implicit or explicit modeling of the response mechanism or on direct 

modeling of the values of the nonrespondents. 

There are two main approaches to inference about finite population 

quantities from sample surveys, the randomization approach and the 

model-based approach (Rubin, 1983). The former, also referred to as 

design-based inference, treats values in the population as fixed and 

the inference is based on the distribution generated by the sample 

selection mechanism. The model-based approach treats values in the 

population as random variables and the inference is based on the 

model specified for these variables and likelihood inference. In the 

presence of nonresponse both approaches yield biased estimates if 

the response mechanism is related to the survey variables. In that 

case the response mechanism is nonignorable and has to be 

incorporated in the inference model to yield unbiased estimates. 

Little (1983) provides a conceptual framework and a review of 

methods for handling nonresponse in parametric model-based 

inference. Most of these methods rely on the assumption of 

ignorable response mechanism and are not directly related to survey 

data. For handling nonignorable nonresponse it has been proposed to 

model the response mechanism by assuming that the survey variable 

y, is observed when another interval scaled variable u. lies below a 

threshold value c. The conditional probability that y. is observed is 

then obtained from the regression of u. on y. and other observed 

variables w.. By means of such a model it can be investigated how 

the nonresponse affects the likelihood based inference. 
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If auxiliary variables are observed for the total sample the 

likelihood inference can be made in two stages to adjust for 

nonresponse bias. Brehm (1990) has applied an approach suggested 

by Heckman (1976, 1979) that involves two-stage analysis. The 

response mechanism is analyzed in a first stage that provides 

values for an additional regressor in the outcome model. The 

coefficients of these additional regressors are estimates of the 

covariances between the errors in the outcome model and the 

response model. Brehm's analyses concern political research 

(categorical variables) and he used three sets of auxiliary variables 

to model the response mechanism: administrative variables of the 

survey process (amount of persuasion, number of calls), behavioral 

variables (four latent variables describing attitudes towards 

strangers, etc, found by LISREL analysis on refusals' and reluctant 

respondents' recorded reasons for not participating), and 

demographic variables (sex, income, respondent's and interviewer's 

race). The corrections induced changes in the estimated outcome 

model coefficients that were consistent, sensible and substantively 

important. 

Other researchers have more directly combined an outcome model 

with a response propensity model. Fay (1986) proposes log-linear 

causal models for modeling ignorable and nonignorable response 

mechanisms when survey data are categorical. Stasny (1986 and 

1987) models the outcomes of a categorical survey variable and the 

response mechanism in a panel survey. She combines a Markov-

chain outcome model with a Markov-chain response model where the 

transition probabilities between response categories depend on the 

outcome of the survey variable. Her approach allows a person to be 

nonrespondent at both of two interview periods, but she has to put 

constraints on the models to get an estimable number of parameters. 
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For a comprehensive review of l ikel ihood-based approaches to model 

and t rea t nonresponse I refer to the textbook by Litt le and Rubin 

(1987). 

There seems to have developed a consensus t h a t inference based on 

randomization theory, like likelihood analysis , must rely on models 

t ha t cannot be tes ted by means of observed da ta when there is 

nonresponse (Särndal and Hui 1981; Little, 1982). 

Within the framework of randomization theory the response 

mechanism can be regarded as e i ther deterministic or s tochast ic . 

With the deterministic approach the population is thought to be 

divided in two s t r a t a , the response s t ratum and the nonresponse 

stratum. The well-known Hansen-Hurwitz plan for subsampling 

among nonrespondents rely on the assumption of deterministic 

response behavior (Hansen and Hurwitz, 1946; Cochran, 1977, pp. 

370-374) . An early application of modeling a s tochast ic response 

mechanism is the well-known procedure of Politz and Simmons (1949, 

1950). 

Lindström and Lundström (1974) proposed a method to inves t igate 

the magnitude of the nonresponse error by introducing a parametric 

response propensity function, p(x)=ax2+bx+c, where 0£p(x)£l and x 

is the survey variable t h a t is assumed to be continuous with a 

frequency function f(x). By means of t h a t model they invest igate 

the variance and bias of the unadjusted mean for the respondents 

for selected values of a and b and various frequency functions. 

Lindström and Lundström define thei r response propensity function 

as the "probability of selecting a responding uni t among uni ts with 

the same var iable value x". Their hesi ta t ion to directly define 

"response probabili t ies" probably reflects t ha t th is concept was not 

commonly accepted among survey s ta t i s t i c ians a t t h a t time. 
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The articles in the three volumes edited by the Panel on Incomplete 

Data, for instance: Oh and Scheuren (1983), Platek and Gray (1983) 

and Cassel et al (1983), and later literature, show a development 

towards modeling the response mechanism as stochastic rather than 

deterministic. The concept of response probabilities seems now to 

have been commonly accepted within the framework of design-based 

inference. 

Oh and Sheuren assume a "uniform response mechanism", i.e., 

constant response probabilities within disjoint subpopulations, and 

they regard the response mechanism as "quasi-randomization". 

Dalenius (1983) argues that "the response mechanism should be 

formulated given the sample s, with consideration given to the 

survey operations to which the units in the particular sample s are 

exposed ." Särndal and Swensson (1987) make this possible by 

regarding the outcome from the response mechanism as generated by 

the second phase in two-phase-sampling. They assume that the 

individual response probabilities are constant within response 

homogeneity groups of the primary sample. (The number of such 

groups and their definition are not necessarily the same for all 

possible samples.) Given the response model is true, (approximately) 

unbiased estimators follow from results obtained under the 

assumption of "true" probabilistic two-phase sampling. Swensson and 

Särndal also conducted a simulation study. This study showed that 

a regression estimator performed better than the "simple expanded" 

estimator concerning variance, sensitivity to wrong assumptions 

regarding the response mechanism, and difference between coverage 

rates of confidence intervals and nominal rate. 

Bethlehem (1988) proposes a model with individual response 

probabilities (not dependent on the particular sample) to investigate 

the properties of the Horvitz-Thompson estimator (HT-estimator) 

and the generalized regression estimator. Both estimators are 
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modified for the nonresponse situation: The modified HT-estimator of 

the population mean is defined as y = (ZyJnJ I (XlJnJ, where n̂  

is the sample inclusion probability. (Bethlehem also formulates 

poststratification as a special case of the modified general 

regression estimator). Ekholm and Laaksonen (1990) model individual 

response probabilities and use estimates of such probabilities in a 

"model based Horvitz-Thompson estimator". (The inverse of the 

product of the sample inclusion probability and the response 

probability is used to weight individual values.) This approach was 

applied in the 1985 Finnish Household Budget Survey, where 

estimates of the individual response probabilities were "predicted" 

by means of a logit model. 

Recent development of nonresponse modeling emphasizes the 

behavioral aspect of nonresponse (Fay, 1986, Groves, 1989, Cialdini, 

1990). "The causes of noncontact nonresponse are likely to be very 

different from the causes of refusal nonresponse" (Groves, 1989, p. 

183). This has implications both for the administration of a survey 

and for the inference from the survey. Therefore, response models 

should be extended to survey participation models that account for 

all relevant factors affecting "participation probability", not just 

covariates related to the sampled person. For instance, the well-

known variability between different interviewers' response rates is a 

factor that could be used in an adjustment model. For a fuller 

description of this matter I refer to chapters 4 and 5 in the 

textbook by Groves (1989), and to Cialdini (1990) and Brehm (1990). 
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2.2 The nonresponse model for a competing risks model 

Most nonresponse models reviewed in the previous section concern 

estimation of fixed population quant i t ies or l inear regression 

analysis . Exceptions are Fay's log- l inear causal models, Stasny's 

Markov-chain models, and Brehm's two-s tage correction used in 

connection with outcome models for dichotomous dependent var iables . 

The nonresponse model proposed in th is paper concerns t radi t ional 

competing risks analysis . The re levant parameters are the t rans i t ion 

in tens i t ies or other model parameters derived from them. 

Following Cassel et al. (1983), I assume probabilistic response 

behavior t h a t is connected with the var iables under study. The 

response probabili ty approach has also been applied by Platek 

(1978), Andersson (1979), Little (1982), Hoem (1983), and others . 

Consider a population of individuals (units) whose current l i f e -

history segments may be described by a competing risks model. 

According to some sampling plan, n uni ts are selected at random 

from the population. The sampling plan is assumed to be 

noninformative, i.e., there is independence between life his tor ies 

and selection. This means t h a t the life histories sampled may be 

regarded as independent outcomes of the same stochastic process, 

provided t h a t the population is homogeneous and tha t there is 

be tween-un i t independence. (For a more detailed discussion of th is 

matter , see Hoem, 1983, Chapter 2; and Hoem, 1989.) 

For the un i t s sampled, we t ry to obtain information about the 

t rans i t ion behavior during some risk period. For various reasons, 

however, we fail to observe some uni ts , the nonrespondents. For the 

respondents we here assume tha t complete information is obtained 

without measurement errors. 



- 14 -

Let the response behavior of an individual be independent of the 

sample design and of the response behavior of other individuals 

(although this is not always true in an interview survey). We 

assume that the response behavior is probabilistic and depends on 

the actual life history in the same manner for all units. This means 

that the life histories observed can be regarded as independent 

outcomes of the same stochastic process, defined by the competing 

risks model and a nonresponse model. Such a model is defined below. 

We consider n units observed from some time 0 until time z (right 

censoring) under the competing risks model with constant intensities 

Uj, Uj,..., Ujj. For each unit we define T = min(U,z), where U is the 

time of transition out of State 0. Let Q. = 1 and Q. = O for k#j and 

j,k=l,2,.. . f K if transition due to cause j occurs before time z. If no 

transition occurs before time z, then T = z and Q. = 0 for all j . Let 

Q = SQ., which means that Q = 1 if T < z and Q = 0 if T = z, 

and let R = 1 if the individual responds, R = 0 otherwise. The 

response behavior (variable R) is assumed to be independent 

between units and to satisfy 

Thus, the response behavior depends on whether decrement occurs 

during the time period (0,z) and from what cause, but not on when 

it happens. (I do not distinguish between causes of nonresponse, 

since most of the nonresponse in the 1981 Fertility Survey was 

refusals, 11% compared with 2% noncontacts.) 

The variables observed are R, Qr=R.Q., Q=R.Q, and T = R T . By this 
J J 

definition, the values of the observed variables are equal to 0 for 

the nonrespondents. 
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We use an extra subscript, v (v=l,2 n) to designate unit 

(individual) number. The observed central rates then become 

(2.1) 

where the numerator is the total number of decrements due to cause 

j (j=l,2 K) and the denominator is the total exposure time among 

all respondents. 

3 Some Empirical Results 

In 1981, Statistics Sweden conducted a fertility survey among 

Swedish women born in 1936-60. A sample of 4 966 women was 

drawn by simple random sampling from each of five strata, a 

stratum being one of the five-year birth cohorts (1936-40, 1941-

45 1956-60) which constitute the target population. Interviews 

were made with 4 300 respondents (87 percent), a comparatively 

high rate for a fertility survey. The response rates were higher 

among women who had children (still) living with them than among 

other women. For women born in 1941-45 the response rate was 89 

percent among those with children compared with 72 percent among 

the other women. (Since children here refer to children 17 years or 

younger, the difference would probably be larger if we could account 

for all children born.) This suggests an association between 

response behavior and fertility. 

The data from the survey have been used in several substantial 

analyses. A technical documentation of the survey is given in 

Lyberg (1984) and substansive descriptive results are given in 

Information i prognosfrågor (1982:4, 1983:4, and 1984:4). Results 

based on life history analyses are presented in Quist and 
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Rennermalm (1985) and in several reports from the Section of 

Demography at University of Stockholm (a late reference, including a 

list of other reports, is Hoem (1990)). 

The expected broad use of data from the survey called for a 

thorough investigation of possible effects of the selective 

nonresponse on estimates. In particular, there was a need to 

investigate the effects of nonresponse in life history analyses. The 

investigation conducted consists of two parts; an empirical study 

based on comparisons with register data and a theoretical part 

presented in this essay. Some results from the empirical 

investigation of the connection between family history and response 

behavior, and of the nonresponse effects on central rates (Lyberg, 

1983) are shown in Figures 1 and 2 and in Tables 1-3. The results 

are based on data from the Swedish Fertility Register mentioned 

earlier. Since only information about response behavior is collected 

from the survey, the results are not confounded by any 

measurement errors in the survey. 

With few exceptions, the response rate is higher at a given age 

among women who left State 0 because of birth (?,) or marriage (f„) 

than among those who remained in the state ( r j . This means that 

the age-specific central rates based on respondents only (up are 

higher than those based on the whole target sample (p.). In other 

words, the birth and marriage intensities are overestimated because 

of the nonresponse. (It is only if zu is very large and both r, and 

p. are much larger for one cause of decrement than for the other, 

that the intensity for the more rare cause might be underestimated 

although the response probability for the decrements is larger than 

for the survivors.) 
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figure 1. Response rates in the 1981 Swedish Fertility Survey among 
those still childless at the end of a given five-year age 
interval and among those who gave birth to their first 
child in the age interval. Women born in 1941-45. Percent. 

Figure 2. Response rates in the 1981 Swedish Fertility Survey among 
those still unmarried and childless at the end of a given 
five-year age interval and among those who gave birth to 
their first child or married in the age interval. Women 
born in 1941-45. Percent. 
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Table 1. Age-specific first birth rates based on the whole sample and 
the respondents only in the 1981 Swedish Fertility Survey. 
Response rates among those still childless, by age, and among 
those who gave birth to their first child in each age interval. 
Women born in 1941-45. 
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Table 2. Age-specific first birth and first marriage rates among childless, unmarried 
women based on the whole sample and the respondents only in the 1981 
Swedish Fertility Survey. Response rates among those still childless and 
unmarried, by age, and among those who left that state due to birth or 
marriage in each age interval. Women born in 1941-45. 

* Number of new mothers (newly married) in the whole sample. 
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Table 3. Duration-specific first birth and divorce rates among childless, first married 
women based on the whole sample and the respondents in the 1981 Swedish 
Fertility Survey. Response rates among those still childless and married, by 
duration in marriage ("age"), and among those who left that state due to 
birth or divorce in each duration interval. Women born in 1941-45 and first 
married as childless at age 20-24. 

Number of new mothers (newly divorced) in the whole sample. 
Age refers to number of years in marriage (duration). 

Among those 502 sampled women born in 1941-45 who married as 

childless in age 20-24 only 23 (4.6%) divorced as childless during 

the first eleven years of marriage. Sixteen 16 (70% or 68-71% with 

95% confidence) of those divorced women participated in the survey. 

Among those 450 women who did not divorce but gave birth to a 

child within the first eleven years of marriage no less than 408 

(91%) participated in the survey. Among those 28 women who were 

still married and childless after eleven years of marriage 22, (79% 

or 77-80% with 95% confidence) participated in the survey. 

(The number of women in the three groups does not add to 502 -

one woman is "lost". She might have been temporarily emigrated and 

thereby not covered by the register for some period.) These 

differences in response rates mean that the central rates based on 

respondents overestimate the marital fertility and underestimate the 

divorce intensities (except for the first five years). 
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4 Technical Bias, Variance and Covariance of Central Rates 

In this section the theoretical model presented in Section 2 is used 

to investigate the effects of nonresponse on the technical bias due 

to ratio estimation, on the variance and on the covariance of 

central rates used as estimates of transition intensities. I present 

some well-known results for the complete response situation and 

investigate whether they are valid when there is nonresponse as 

well. It is found that they usually are. Most of the time, the 

technical bias can be ignored. If those who decrement from various 

causes have response behaviors which differ from each other and 

from those of the survivors, then the central rates for different 

causes are in fact correlated, and the usual variance estimator is 

biased. However, the correlation and the bias of the variance 

estimator are probably insignificant for realistic values of 

intensities and response probabilities. Finally we present an 

approximately unbiased covariance-variance estimator. 

4.1 The complete response situation 

When all units respond, the central rates in (2.1) are maximum 

likelihood estimators of the intensities u. (j = l,2,..., K). In that case, 

the rates are asymptotically independent and normally distributed 

with expected values and variances (see, for instance, Hoem and 

Funck Jensen (1982), and the Appendix): 

(4.1) 

and 

(4.2) 
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The second term in the brackets of (4.1) is the (approximate) 

technical bias. This bias decreases faster than the standard error 

as the number of observations increases. The relation between the 

technical bias and the standard error is shown in Table 4, based on 

results provided by Beyer et al (1976) and Vath (1977). Their 

results are calculated from exact formulas for expected value and 

variance, but calculations based on the approximate expressions in 

(4.1) and (4.2) with z=l give the same results down to the second 

decimal in most cases. 

Table 4. Relative technical bias and ratio between technical bias and 
standard error of occurrence/exposure rates without 
nonresponse, by sample size n, for z=l. 

It appears that the technical bias is very small compared to the 

standard error for small values of u and u./u. The technical bias 

can give a significant contribution to the mean square error only if 

li is very large and the number of observations is very small. 

4.2 The nonresponse situation 

In the nonresponse situation, the approximate moments of the 

central rates in (2.1) become (see Appendix, Theorem 1): 
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(4.3) 

(4.4) 

(4.5) 

is the overall expected response rate among all departures, 

If r. = rQ = 1 for all j , i.e., if all units respond with probability 1, 

then (4.3) and (4.4) become equal to (4.1) and (4.2), respectively, 

and (4.5) becomes equal to 0. If the response probabilities are equal 

(a rather unrealistic assumption), i.e., if r- = r0 = r for all j , then 

the covariance expression in (4.5) again becomes equal to 0 and the 

PYnrpKsinns in (d.R) nnii (d.d) hppnmp 

is the overall expected response rate. Thus, if the response 

probabilities are equal for all units, the only effect of nonresponse 

on the technical bias and on the variance is that they both 

increase as the expected number n r of observations decreases. 

We have made a series of trial calculations of the standard error 

and technical bias; some of these calculations are listed in Table 5, 
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which shows the effect of unequal response probabilities when the 

overall expected response rate, r = qra+ pr- is 85 percent. 

Table 5. Increase in relative standard error (coefficient of 
variation) and relative technical bias of û due to 
selective nonresponse with an overall expected response 
rate of 85 percent, for z=l . One cause of decrement. 

With equal response probabilities of r = 0.85 for all units, 

irrespective of the outcome of the life history, the relative standard 

error and technical bias will increase by 8 percent and 18 percent, 

respectively, due to nonresponse. The increase is larger for the 

technical bias than for the standard error. Further calculations 

suggest that the standard error seems to be more sensitive to the 

difference between r, and r„. For the technical bias, the increase 

seems to be approximately proportional to the inverse of the overall 

expected response rate r, no matter how much r, and r« differ. This 

is generally valid for small intensities, u < 1. Thus, most of the 

time, the technical bias behaves in the same manner in the 

nonresponse situation as in the complete response situation: the 

bias is proportional to the inverse of the number of observations 

and is insignificant if this number is large enough. 
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The central rates for different risks become correlated if the 

response probabilities differ, as is shown in (4.5). The term a* 

usually becomes very small, however, and the correlation between 

the central rates can be ignored. This is illustrated in Table 6. 

Table 6. Approximate correlation between estimators of transition 
intensities for two causes of decrement, for z=l. Percent 

In the nonresponse situation, the usual variance estimator becomes 

(4.6) 

where ST is the total exposure time among the respondents. When 

there is no nonresponse, this estimator is approximately unbiased. 

In the presence of nonresponse, its expected value is approximately 

(4.7) 

The second term in the brackets of (4.7) is the approximate relative 

bias of the variance estimator in (4.7). Like the covariance in (4.5), 

this bias depends on a*, which is equal to 0 if the response 
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probabilities are equal, i.e., if r. = rfl for all j . If the response 

probabilities differ, the variance estimator is biased, but the bias is 

usually very small (see Table 7 and Figure 3). 

Table 7. Relative bias of the variance estimator in 
(4.6) for one cause of decrement, for z=l . 
Percent. 

Figure 3. Relative bias of the variance estimator in (4.6) for one 
cause of decrement with intensity p and observation until 
time z. Selected values of response probabilities for 
decrements (r1) and for survivors (r0 , respectively. 
Percent. 
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Thus, we can usually rely on the common variance estimator even in 

the nonresponse situation and also ignore the small correlation 

between different central rates. If we have any doubts, however, we 

can use the following estimator (derived in our Appendix, Theorem 

1), which estimates the variances and covariances approximately 

unbiasedly: 

( 4 . 8 ) 

for i j = 1,2,..., K. The term n in (4.8) is the number of sampled 

units which belong to State 0 during the relevant observation 

period. (This number corresponds to the figures in the last columns 

in Tables 2 and 3.) Usually this number is unknown. Replacing n(n-

1) by 1 results in a slight underestimation. Replacing n(n- l ) by 

n ( n - l ) , where n is the number of observed units during the 

relevant period, gives a slight overestimation instead. 

5. Nonresponse Bias 

In the preceding section I showed that the technical bias of the 

central rate pj usually is insignificant. This means that E(ûj) ~ 

q'/V = uï, which, however, is usually not approximately equal to 

the transition intensity u.. The estimator suffers from nonresponse 

bias. This bias is serious, since it cannot be estimated from 

observed data. Also, the nonresponse bias does not decrease as the 

number of observations increases, unlike the technical bias. On the 

contrary, the ratio between the nonresponse bias and the standard 

error increases as the number of observations increases. 
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In this section it is shown how the nonresponse bias of central 

rates can be expressed as a function of the differences between the 

response probabilities of the decrements from various causes and for 

the survivors. I discuss how large the nonresponse bias may be; it 

turns out that it may be very large if the response probabilities 

differ greatly. I have also investigated the effects of nonresponse 

on estimates of transition and survival probabilities. It was found 

that the nonresponse bias seems to be less important if such 

probabilities are estimated via the central rates rather than 

directly by the proportions of decrements and survivors, 

respectively. 

5.1 Nonresponse bias of central rates 

The nonresponse bias of the central rate p? 0 = 1.2,..., K) is 

approximately 

(5 .1 ) 

( 5 . 2 ) 

where a ( p ) = /V(pO » p" jP /nq . The approximation in (5.2) is 

based on the assumption that the term q^a in (4.7) is insignificant, 

which is usually true (see the preceding section). 

The nonresponse bias of p[ 0=1,2 K) is positive if r, > rQ > r0 

and negative if r. < rfl < r». If the response probabilities are equal, 

i.e., r. = r« for all j , there is no nonresponse bias. At the end of 

this section I present values of the relative nonresponse bias (Table 

13) and of the ratio between the nonresponse bias and the standard 

error (Table 14). Tables 8 and 9 are excerpts from those tables. The 
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results show that the nonresponse bias may be very large if the 

response probabilities of decrements and survivors differ greatly. 

Table 8. Relative nonresponse bias, b(û)/u.. Percent; 
z=l J J 

r_. is the overall expected response rate among 

decrements from any other cause than j . 

Table 9. Ratio between nonresponse bias and the 
standard error, Mûp/cKûj), for sample size 
n=100. Percent; z=l 

In our fertility survey, the differences between the response 

probabilities for decrements and survivors increased with age (see 

Tables 1 and 2). This is natural, since the group of survivors 

becomes more and more homogeneous with respect to fertility and 

nuptiality (and response behavior) with increasing age. This means 

that the nonresponse bias becomes more serious when we analyze 

the life histories for high ages. This is illustrated in Table 10, 

where the transition intensities and respond probabilities are based 

on the corresponding estimates in Table 2. 
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Table 10. Relative nonresponse bias and ratio between the 
nonresponse bias and the standard error for realistic 
values of transition intensities and response 
probabilities. Sample size n=100; Percent; z=l . 

If there is only one cause of decrement, the expected value and 

relative nonresponse bias of û become 

( 5 . 3 ) 

and 

( 5 . 4 ) 

respectively, where 

( 5 . 5 ) 

and w = r/r». 

The term g(u) increases with zu. Thus, the relative nonresponse 

bias is insignificant for very large values of zp, and is 

approximately equal to (w-1) = (r,- rJ / r . if zp is much smaller 

than 1. Figure 4 shows the relative nonresponse bias for various 

values of zp and of the ratio w. Realistic values of that ratio are 

given in Table 11. 
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Table 11. Values of w = r1/r0 for selected realistic 
values of r1 and r0. 

Figure 4. Relative nonresponse bias of û . Percent 

5.2 Nonresponse bias of estimated transition and survival 

probabilities 

One often wants to estimate the transition probabilities q- = Pj(0,z) 

= qu./u = [l-exp(-zu)]u./u, for j = l,2 K, and the survival 

probability p= l -q= exp(-zu). Various estimation methods are 

available. We discuss two of them. One is based on the estimated 

transition intensities and the other on the observed proportions of 
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survivors and decrements due to the various causes. In the 

nonresponse situation those estimators become (for z=l): 

(5.6) 

(5.7) 

respectively, where n is the number of respondents. Both methods 

give consistent estimators when there is no nonresponse. The latter 

estimators are also unbiased in that case. The former estimators , 

however, have slightly smaller asymptotic variances. In the 

nonresponse situation both methods give rise to nonresponse bias: 

where h(zu) = 1/(1 + wg(zu)] with g(zu) given in (5.5). Both 

estimators underestimate p and overestimate q if w=r„/r0>l and vice 

versa. (As before, rfl and r, are the response probabilities among 

decrements of any cause and among survivors, respectively). It can 

be shown that the magnitudes of the relative biases increase with 

| w - l | . 
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Calculations with real is t ic values , (0.02£ p,q < .98 and 0.1£ w 

£5), show the following re la t ions for the re la t ive biases of the 

est imators: 

Calculations for . l ^ w ^ 5 and .02£p,q£.98 also show that : 

decreases with p for all p, 

and increases with | w—1 j except 

for small w; w<w(p)j. <1, 

and t h a t 

increases with q except for 

large q; q>qlim> 

and increases with | w— 11 except 

for small w; w<w(q)j. <l, 

where, for instance, : 
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For realistic values of w and p=l-q , however, the estimators' 

relative nonresponse biases differ by a few percentage points only. 

Examples of the results presented above are shown in Table 12 and 

Figures 5 and 6 below, and in Table 15 and at the end of this 

section. 

Table 12. Relative nonresponse bias of estimated 
survival probabilities obtained via estimated 
intensities (p') and observed proportions of 
survivors (p"), respectively. Percent. 
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Figure 5. Relative nonresponse bias for q '=exp(-û) and difference 
between |rb(q")j and | rb(q ' ) | , by w=r1/r0 for selected 
values of q. Percent and percentage points. 

Figure 5 shows how the size of the relative bias for the estimator 

q' increases when the difference between the response probabilities 

of decrements and survivors increases. For realistic values of q and 

w, the relative nonresponse of the estimator p" is only a few 

percentage points larger in magnitude than that of p'. 
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Figure 6. Relative nonresponse bias for q '=exp(-û) and 
difference between |rb(q")l and | rb(q ' ) | , by q for 
selected values of w=r,/r0 Percent and percentage 

points. 

Figure 6 shows how the relative bias for the estimator q' decreases 

with q. The difference between (rb(q")| and [ rb(q') | also increases 

with q, if q is not very large. This difference is, however, only a 

few percentage points. 
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The estimators q' and p' that are based on estimated transition 

intensities perform better than the corresponding estimators q" and 

p" that are based on observed proportions of decrements and 

survivors. The former have slightly smaller asymptotic variances 

and slightly smaller nonresponse bias. However, the former require 

more information: One must know when the decrements occur to 

calculate the denominator of the central rate. 

5.3 Summary of results 

Tables 13 and 14 present the nonresponse bias for central rates 

used as estimates of transition intensities for selected values of u, 

and u and various response probabilities. Table 13 presents the 

relative nonresponse bias and Table 14 the ratio between the 

nonresponse bias and the standard error for n=100. 

Table 15 shows the relative nonresponse bias for estimates of 

transition intensities and of transition and survival probabilities 

when there is only one cause of decrement. The relative bias is 

large when the response probabilities differ greatly and the 

parameter estimated is small. Thus, the absolute nonresponse bias 

may be small but is nevertheless important when estimates of 

small-valued parameters are compared in the analysis. 
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Table 13. Relative nonresponse bias of ûj for selected values of u. and u; z=l. 
Percent. 

r . is the overall expected response rate among decrements from any cause 

other than j . 
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Table 14. Ratio between nonresponse bias and standard error2) of uj for selected 
values of u. and u; z=l n=100. Percent. J 

r.j is the overall expected response rate among decrements from any cause 
other than j . 

The figures should be multiplied with 0.1 / n , where n is the sample size. 
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Table 15. Relative nonresponse bias of estimators of transition intensities, of 
transition probabilities and of survival probabilities. Percent. 

Û is the occurrence/exposure rate based on data for the respondents, 

p', q' are the estimators of survival and transition probabilities, 
respectively, based on the estimated transition intensity: 
p' = l -q '=exp( -zp ) , 

p", q" are the corresponding estimators based on the observed proportion of 
survivors and decrements, respectively. 
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6. Two Ways of Adjusting for the Nonresponse Bias 

Since the "naive" central rates in (2.1) are biased in the presence 

of nonresponse, two methods for adjusting for such bias are 

investigated. Both of them are based on the assumption that it is 

possible to get accurate estimates of the ratios w. = r./rfl 0=1.2,..., 

K) between the response probabilities for the decrements and the 

response probability for the survivors. If such good estimates are 

available, we may decrease the nonresponse bias almost completely 

by adjustment methods. We take a risk, however: the nonresponse 

bias may in fact be increased by the "adjustment" methods. This 

happens if our estimates of the {wj are inaccurate. This is a 

finding analogous to those made by Frankel (1969) and Thomsen 

(1973) for design-based adjustment methods (groupwise weighting 

and post-stratification). 

I begin by presenting the two adjustment methods which provide 

consistent estimators if exact values of the |w.} are available. After 

that I illustrate how the estimators are affected by erroneous 

estimates of w=r./r() when there is only one cause of decrement. I 

also try to provide some rules of thumb for deciding when one 

adjustment method is better than the other. Finally, some other 

common adjustment methods are discussed and it is explained why 

they seldom can be used in life-history analysis. 

6.1 Description of the methods 

Suppose that we are willing to guess or use previous surveys to 

estimate the ratios between the response probabilities by wj =rj7r„ 

(j = l,2,..., K). In the following we do not distinguish between pure 
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nonrandom guesses and random estimates. Both are denoted wj, and 

so is the expected value of a random estimate w|. The distinctions 

are unimportant here. 

The first adjustment method is inspired by standard sampling 

methods, where an observation is weighted by the reciprocal of the 

probability of its inclusion in the sample. In our nonresponse 

situation this probability depends on the outcome of the life 

history, according to the model in Section 2. The weighted central 

rate becomes: 

where Q J = R(l-Q) = 1 if the individual is a survivor and a 

respondent, and Q» = O otherwise. As before, the variables observed 

(Q| and T ) are equal to 0 for the nonrespondents. 

Multiplying the numerator and denominator in (6.1) by rl, we see 

that the estimator can be expressed as a function of the ratios wj. 

If the technical bias is insignificant, we can easily derive the 

expected value of the estimator in (6.1) by means of the results in 

the Appendix (Theorem 1). When there is only one cause of 

decrement, the nonresponse bias of ûj = û' can be expressed as 

(6.2) 
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Figure 7. Nonresponse bias of the adjusted estimator û' for zp=0.01 
and zu=l and selected values of the guessed ratios, 
w'=r,/r0, between the response probabilities. Percent. 

The adjusted estimator in (6.1) is approximately unbiased if the 

ratios between the response probabilities can be estimated (guessed) 

correctly. Figure 7 shows, for zu = 0.01 and zu = 1, and for 

various values of w and w', how the nonresponse bias may decrease 

or increase by using the adjusted estimator £'. For instance, 

suppose zu = 0.01 and w=1.3, which are rather realistic values. If 

we do not adjust, i.e., if we let w' = l, then the nonresponse bias is 
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about 30 percent (zu=0.013). Adjusting with w'=1.2 or w' = 1.4 would 

decrease the nonresponse bias to about 10 percent and - 7 percent, 

respectively. Adjusting with w'=0.8, however, would increase the 

nonresponse bias to about 60 percent! 

The second adjustment method was suggested by Hoem (1981). This 

method is based on the fact that the expected values of the 

unadjusted estimators ft! (j = l,2 K) can be expressed as functions 

of the parameters .u. = (u,,..., u j and w = (w,, w„,..., w„). By (5.1), 

(6.3) 

for a suitable function f. By replacing ]i. and w in (6.3) by p? and 

w' = (w!, w' w'), respectively, for j=l,2,... , K, we get a system of 

K equations in which the unknown terms JJ can be found by an 

iteration method. With only one cause of decrement, the system 

reduces to the following single equation: 

(6.4) 

were w'=rj/rg is the guessed ratio between the response probabilities 

for decrements and survivors. 

The equation in (6.4) can be solved, for instance, by the Newton-

Raphson method. This gives the following iteration formula (see 

Appendix, Theorem 2): 

(6.5) 

where 
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A number of trial calculations with different starting values have 

shown that the iteration process converges very fast. Only a few 

steps are necessary to obtain accurate approximations. We have 

used as starting values the expected values of the unadjusted 

estimate u or the adjusted estimate £'. The adjusted estimate found 

by this iterative method is approximately unbiased, provided that w' 

= w. 

6.2 Comparison of the methods 

Let us denote by û" the estimator (estimate) found by the iterative 

method. Figure 8 shows how the relations between the expected 

values of the three estimators û , Û' and û" on the one hand and 

the parameter value u on the other, depend on the relation between 

w, w' and 1. (The results are derived in the Appendix, Theorem 3.) 

If the true ratio w is less than 1, the unadjusted estimators have a 

negative nonresponse bias. This is true also for the adjusted 

estimators û' and û" if w'<w, i.e., if we overestimate the ratio 

w=r./r0 between the response probabilities. 
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Figure 8. Relations between the expected values of the three 
estimators: û (unadjusted), p' (adjusted by weighting), Û" 
(adjusted by the iterative method), and the true parameter 
value u, for various relations between w, w' and 1. 

Both adjustment methods reduce the size of the bias without 

changing its direction if Kw'<w or w<w'<l, i.e., if w' is on the 

"right" side of 1. If we overdo our adjustment, i.e., w'<w<l or 

Kw<w'., we change the direction of the bias and may even increase 

its size. Both adjustment methods always increase the bias (without 

changing its direction) if w' is on the "wrong" size of 1. 

Figure 8 shows that the adjusted estimators work in the same way. 

In fact, via a number of calculations, we have found that they also 

change the nonresponse bias to approximately the same size if zu is 

not too large. This is illustrated in Table 16. We had to choose zu 

as large as 1 and 5 to obtain visible differences between u' and u". 
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Table 16. Expected values of the three estimators: u (unadjusted), p' 
(adjusted by weighting), and p" (adjusted by the iterative 
method). 

It is better to adjust by weighting than by the iterative method 

when w<w'<l, and the opposite is true when Kw'<w. If, however, u 

and zp are small, the two methods give approximately the same 

results. Then there is no need to use the more complicated iterative 

method. If p or zp are large enough to give visible differences 

between the two methods, we have found that the weighting method 

(p') seems to be less sensitive to erroneous estimates of w than the 

iterative method (Figure 9). 
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Figure 9. Expected values of the adjusted estimators û' and û" for 
zu=2 and zu=5 and selected values of the guessed ratios 
w'=rl/rO. 

Unfortunately, both adjustment methods are sensitive to erroneous 

estimates of w when w is not close to 1, i.e., when the nonresponse 

bias is significant and there may be reasons to adjust for it. Thus, 

we have verified the old truth that the only safe way to reduce 

nonresponse bias is to reduce the nonresponse rate. 
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6.3 Other adjustment methods 

For many reasons no global adjustment method was used in the 1981 

Swedish Fer t i l i ty Survey. The main reason was tha t the empirical 

s tudy (Lyberg, 1983) suggested t h a t the nonresponse bias was small 

compared with the random errors for the est imates of the main 

survey var iables (fert i l i ty and nupt ia l i ty) . Thus, it would not be 

wise to use an adjustment method tha t could increase the bias and 

decrease the precision. The two methods invest igated in the 

previous section were found to be very sens i t ive to wrong guesses 

of the relat ion between the response probabil i t ies . These methods 

could therefore not be recommended. No other adjustment method 

useful in l i fe-his tory analysis was found in the l i te ra ture . 

Most of the nonresponse models discussed in Section 2.1 aim a t 

adjusting for nonresponse. Survey s ta t i s t i c i ans often use weighting 

to adjust for nonresponse bias (see, e.g., Thomsen (1973, 1978), 

Lindström et al. (1979), Platek et al. (1978), Jagers (1986)). A 

review is given by Kalton and Kasprzyk (1986). The concept of 

response probabili t ies seems to have been commonly accepted. At 

least if such probabili t ies are formulated as conditional on the 

sample, as proposed by Särndal and Swensson (1987). A 

straightforward adjustment technique within the randomization 

theory is then to modify the Horvitz-Thompson estimator by 

weigthing with the "total inclusion probability" defined as the 

product of the sample inclusion probabili ty and the response 

probabili ty. 

With many auxiliary var iables the response probabili t ies can be 

est imated by logistic or probit regression and used directly for 

weighting individual values (see, for ins tance , Ekholm and 

Laaksonen (1990)). This method, however, can increase the variance 
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substantially if the predicted response probabilities vary greatly. 

The two-phase sampling approach with conditional generalized 

regression estimation, developed by Swensson and Särndal (1987), is 

probably less sensitive. 

The weighting adjustment methods found in the literature concern 

population totals (or means). For central rates (and other ratio 

estimators) the adjustment methods proposed can be applied to the 

numerator and denominator separately. If the groups are defined by 

the outcome of the life histories (i.e., the value of Qp, the 

standard groupwise weighting method becomes equivalent to the 

weighting method described in the previous section. (If the values 

of Q, were known for the nonrespondents it would also be possible 

to use an imputation technique for the missing exposures. 

Imputation for nonresponse is, however, not permitted by the data 

protection legislation in Sweden (Dalenius, 1979).) Auxiliary 

variables, other than the outcomes, could also be used to estimate 

response probabilities and weigh the occurrences and exposures 

separately. 

Adjusting by weighting requires auxiliary variables that are 

correlated with the response mechanism (or rather reflect the 

correlation between the response mechanism and the outcome 

variables). For the 1981 Swedish Fertility Survey two different 

population registers could provide such auxiliary information: the 

Swedish Fertility Register (SFR) and the Total Population Register 

(TPR). 

The SFR contained demographic data on life histories but no 

additional information that was expected to be associated with 

response behavior, for instance education, income, place of 

residence, etc.. The SFR information was therefore not expected to 

yield accurate estimates of response probabilities. Furthermore, it 

would not be easy to decide what life history data to account for 
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when estimating response probabilities or defining homogeneous 

response groups (total fertility, fertility and timing of births, the 

fertility and marital history, or what?). 

The TPR, which constituted the sampling frame, contained 

information about present address, marital status, children under 18 

living with their mother, and income. That information could perhaps 

be useful to adjust estimates of the current situation, for instance, 

attitudes toward children. However, the central rates used in life 

history analyses concern subgroups defined by previous status, for 

instance background variables and duration in a state. The TPR-

information could not be used for estimating response probabilities 

for such subgroups. 

Weighting with response probabilities is a natural extension of the 

randomization theory for estimating population quantities. Life 

history analyses based on central rates rely on parametric outcome 

models and likelihood inference, however. The treatment of 

nonresponse in these analyses should therefore be derived within 

the framework of likelihood inference. One way is to model the joint 

distribution of the outcome variables (Q- and T) and some auxiliary 

variable (x) so that the response mechanism can be ignored. This is 

the case if the loglikelihood can be decomposed into loglikelihoods 

(with distinct parameters) that correspond to likelihoods for 

complete data problems. (Little and Rubin, 1987, chapter 6). 

Another (likelihood-based) way is the "stochastic censoring 

approach": The outcome variable (y) is observed if and only if the 

value of an unknown variable (u) exceeds a threshold value and 

both y and u are assumed to have a linear regression of covariates. 

The parameters can be estimated by maximum likelihood or the two-

step method proposed by Heckman (1976, 1979) and used by Brehm 

(1990). (See, Little and Rubin, 1987, chapter 6). A third way is a 

Bayesian approach. 
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Of course, the best solution is to model the outcome variables so 

that the response mechanism can be ignored. Then all methods 

derived for the complete response situation can be applied, for 

instance, statistical tests, intensity regression (used in many 

analyses of the fertility survey), and so on. Likelihood methods for 

treating nonignorable response mechanisms were considered too 

complicated for the fertility survey as the survey was to be used 

for many different analyses. 

7 Concluding remarks 

The simple nonresponse model proposed in this essay has been 

useful for studying the effects of nonresponse on estimates of 

transition intensities in a competing risks model. It has been shown 

that central rates (occurrence exposure rates) based on the 

respondents only behave in the same way as in the complete 

response situation, provided that the response probabilities are 

equal for decrements and survivors. Then the response mechanism is 

ignorable: the central rates are asymptotically unbiased estimators 

of the transition intensities, the standard variance estimator is 

asymptotically unbiased, and the central rates for different causes 

are asymptotically uncorrelated. 

When the response probabilities differ between decrements from 

different causes and survivors, the estimators are not unbiased and 

uncorrelated. In most cases the technical bias (due to ratio 

estimation), the bias of the variance estimator, and the correlation 

between central rates for different causes can be ignored. The 

nonresponse bias, however, may be very large. This bias can be 

expressed as a function of the differences between the response 

probabilities for decrements from different causes and the survivors 

and the underlying transition intensities. 
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Two adjustment methods were investigated, but no one was judged 

useful. Both methods require accurate estimates of the ratios 

between the response probabilities for decrements from different 

causes and the response probability for survivors. If erroneous 

estimates of these ratios are used the nonresponse bias may 

increase. As long as no robust adjustment method for competing 

risks models has been found the researcher is advised to use 

relevant covariates in the outcome model so that the response 

mechanism becomes ignorable. 
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APPENDIX 

Theorem 1. The moments of the observed variables and observed 

central rates defined in Section 2 are as follows (for j = l,2 K): 

(A.l) 

(A.2) 

Furthermore, the covariance is estimated approximately unbiasedly 

by 

(A.3) 
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Proof. We use the following results concerning the model variables 

(for j = l,2 K): 

The moments of T, conditional on Qj = 1, are derived by using 

The results in (A.l) which have to do with the observed variables 

are then obtained by inserting the results of (A.4) in the following 

expressions: if Y = R-Y, then 

To derive the moment of the observed central rates, we notice that 

they can be expressed as ratios of means: ûj = Qî/TJ, where each 

of Q- = £ Q?/n and T = S TJ/n is a mean of n stochastically 

independent variables, identically distributed as Q" and T . 

respectively. 
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Let y, ïï, x and v be the means of n stochastically independent 

variables, identically distributed as Y, U, X and V with expected 

values m , m , m and m , respectively. By means of a Taylor 

expansion (see e.g., Des Raj, 1968, Chapters 5.4-5.5), it can be 

shown that the expected value of the ratio y/x and the covariance 

of the ratios y/x and û"/v are approximately 

(A.5) 

where RC(.,.) denotes the relative covariance. Furthermore, a 

consistent estimator of the covariance above is given by 

If we let Y = Q', U = Q-, and X = V = T in the expressions above 

we obtain, after some algebra, the results in (A.l). • 

Theorem 2. Suppose that x - x" is the unique solution to the 

equation 

where p(x) = 1 - q(x) = exp(-t) and b > 0. Furthermore, suppose 

that the Newton-Raphson iteration process converges to T" and is 

sufficiently close at the nth step. Then the following is true for 

the nth value in that process: 

(A.6) 
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The Newton-Raphson gives the following iteration formula to solve 

the equation f(y) = 0: 

(A.7) 

From q'(t) = -p'(x) = -p(x) = -p(t) and p+q=l it follows that: 

The last expression is always positive, since b>0 and p(t/q)2<l, 

as shown by the following Taylor expansions: 
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This means that the correction factor in (A.7), c = - f(t )/f'(t ), is 

negative if f(t ) > 0 and positive if f(t ) < 0. As the process 

converges then 

(A.7) 
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and let T" be the unique solution to the equation: 

Then the following relations are true: 

Proof. The relations between u, u and u' are easily found by 

some algebra: 

(a) 

(b) 

(c) 

To compare u" with u, u and u', respectively, we use the result in 

Theorem 2. Assume that T =x, t =T and x =X', respectively, are 

sufficiently close to x". Inserting these terms into: 

(d) 

(e) 



Appendix: page 7 

(f. l) 

Inserting the approximation: 

(f2) 

Combining the results (a)-(f) yields: 
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List of notations 

Parameters: 

u.(t) = transition intensity as defined in Section 1. 

p = l - q = exp(-zu) = the survival probability for constant transition intensity 
Vi and censoring time z. 

q. = qu./u = the transition probability for cause j . 
i i 

r., rft = the response probabilities among decrements from cause j (j = l,2 

K) and survivors, respectively. 

Variables: 

Q. = 1 if transition due to cause j , Q|=0 otherwise. 

Q = SQ, = 1 if transition due to any cause, Q=0 otherwise. 

R = 1 if the individual responds, R=0 otherwise. 

T = min(U,z), where U is the time of transition out of State 0, and z is 
the censoring time. 

Qr, Q , T = RQ., RQ, RT, respectively, observed variables that are equal to 0 for 
thé nonrespondents. 

f., f» = observed response rates. 

n = number of respondents. 

Estimators: 

Û = central rate (occurrence/exposure rate) based on the whole sample. 

Û? = corresponding rate based on the respondents (2.1). 

Pj = estimator adjusted by weighting (6.1). 

UV = estimator adjusted by the iterative method (6.5). 

q|, p' = estimators of transition and survival probabilities based on estimated 
transition intensities (5.6). 

q'|, p" = estimators of transition and survival probabilities based on observed 

proportions (5.7). 

n = number of respondents. 

Expected values: 

rQ = Eru./u = the overall expected response rate among all departures. 

r = qrfl + pr„ = the overall expected response rate. 

r . = the overall expected response rate among decrements from any cause 
other than j . 

q", q , t = expected values of Q-, Q, and T \ repectively (A.l). 

wj = q j / t . 
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