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Variance estimation for systematic pps-sampling 

by 

Bengt Rosén 
Statistics Sweden 

Abstract: We present a novel approach to computation of confidence inter
vals based on linear statistics, notably Horvitz-Thompson estimators, when 
observations come from a systematic pps-sample. The new method is 
believed to work well also in situations with large sampling fractions. Like 
already existing methods the new one is based on approximation arguments, 
and the crucial idea is to approximate systematic pps-sampling (under total 
ignorance of frame order) by successive pps-sampling. We report on some 
simulation findings, which support the conjecture that the proposed variance 
estimation method works quite satisfactorily over a very wide range of 
sampling fractions. Moreover, it is numerically simple. Accordingly we want 
to recommend it for practical use, in particular in situation with systematic 
pps-samples with high sampling rates. 
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1. Introduction and outline of the paper 

The main task of this paper is to present a novel approach to computation of confidence inter
vals from observations on a systematic sample. Systematic sampling procedures are widely 
employed in survey practice, and their popularity depend generally on the fact that they 
provide means for exploiting auxiliary information to improve estimation precision (relative 
to e.g. simple random sampling). Systematic sampling procedures enable two different kinds 
of variance reducing forces to be set in action, namely "variation of selection probabilities", 
accomplished by systematic pps-sampling, respectively "appropriate ordering of the sampling 
frame". The latter method is especially relevant in connection with ordinary (equal selection 
probabilities) systematic sampling, henceforth referred to as simple systematic sampling. The 
two forces can also be combined, thereby hopefully leading to added positive effects. Below 
we give a brief discussion of merits and drawbacks of systematic sampling. Extensive over
views can be found in e.g. the papers by Bellhouse (1988) and Murthy & Rao (1988). 

Varying selection probabilities is employed in list sampling situations (i.e. study units are 
sampled "direcdy") as well as in multistage sampling. In the former type of situation, con
siderable reduction of estimator variances can be achieved by sampling so that inclusion prob
abilities become (fairly) proportional to the values of an auxiliary variable, usually called the 
size measure variable, which in turn is known (or believed) to be fairly proportional to the 
values of the study variable. In multi-stage sampling situations, varying probabilities pro
cedures are usually employed in the initial selection stages for reasons which rather are 
opposite to the previous ones; To render fairly equal inclusion probabilities to the (ultimate) 
study units. However, whatever be the rationale for desiring varying inclusion probabilities, 
one meets the problem of advising a sampling scheme which leads to desired inclusion prob
abilities. A chief reason for the popularity of systematic pps-sampling is that it offers an 
operationally very simple solution to this problem. As regards "frame ordering", it is well 
known that substantial reductions of estimator variances can be achieved if the sampling 
frame can be arranged so that the values of the study variable exhibit a "smooth trend" (pre
ferably linear) in their frame order. The accomplishment of a beneficial frame ordering, 
requires (good) auxiliary information. 

The method of systematic sampling, be it pps or simple, is associated with certain difficulties, 
though, as regards estimation of estimator variances, for subsequent use in confidence inter
vals, and the difficulties become particularly pronounced when the sampling fraction is 
"large" (say 25% or more). The pertinent feature of the proposed new method is that it is 
believed to work satisfactorily over a wide range of sampling fractions, notably large ones. 
Even if very high sampling fractions are fairly unusual in sampling practice, they do occur. 
In fact, the present investigation was initiated by confidence interval problems in Statistics 
Sweden's Labour Force Barometer, which surveys some 100 different populations (many of 
them quite small) with systematic pps-samples, of which quite many have sampling rates of 
50% or more. Confidence intervals based on systematic samples is, however, certainly not 
new problem area, and a wealth of methods have been suggested. All of them are of a more 
or less approximate nature, and this holds also for the method to be presented. An extensive 
overview of variance estimation for systematic samples can be found in the book by Wolter 
(1985), Chapter 7. 
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Next we give a brief indication of the central idea in the new approach. To provide back
ground, we first note that the variance estimation methods which are most widely used in 
present practice, are based on the following heuristic approximation argument; 

A systematic pps-sample behaves very much like a "corresponding" 
pps-sample drawn with replacement (1.1) 

For with-replacement sampling, there is a standard solution to the variance estimation prob
lem, and (1.1) provides a link for using this solution also for systematic pps-sampling. How
ever, since systematic pps-sampling is a without-replacement procedure, the solution provided 
by (1.1) is only approximative. The approximation works quite well, though, as long as the 
sampling fraction is negligible (and thereby, the difference between with- and without-re
placement is little), but the larger the sampling fraction becomes, the cruder the approxima
tion is. A natural diought is that "remedy" for cases with non-negligible sampling fractions 
could be achieved by employing some finite population correction (fpc) to the estimator, (the 
simplest fpc-candidate being the "traditional" one, (1-n/N)). In fact, correction with fpc's can 
make the estimators work satisfactorily over a wider range of sampling fractions, as is dis
cussed in more detail in e.g. Wolter (1985). A common feature of the suggested fpc's is, 
however, that they all are considerably ad hoc. The approach to be studied in this paper is 
based on an approximation which differs from (1.1) to the effect that systematic pps-sampling 
is, already from the beginning, approximated by a without-replacement procedure, namely so-
called successive pps-sampling. The basic approximation argument, still heuristic though, 
runs as follows; 

A systematic pps-sample behaves very much like a "corresponding" 
successive pps-sample. (1.2) 

We conclude this section with an oudine of the rest of the paper. When systematic sampling 
is employed, the variance of a sample statistic depends crucially on the order in the sampling 
frame. Therefore, when investigating estimator variances one inevitably has to handle "frame 
order" as a formal ingredient. In practice the frame order is usually not generated by an 
"objective" random mechanism, but typically by the surveyor's efforts (for which there are 
good reasons) to impose an order, which renders as much "smooth trend" as possible to the 
(most important) study variables. As a consequence of this, the formal modelling of frame 
order will concern codification of "opinions" on the frame order, which more or less inevitab
ly leads to probability models with "subjective" ingredients. This pronounced subjectivity 
aspect distinguishes inference for systematic sampling from that for the majority of other 
sampling procedures. In Sections 2 and 3 we formulate and discuss a precise and coherent 
formal frame-work for finite population inference, with special regard to aspects that are 
pertinent to systematic sampling. We also review some well-known results, for subsequent use 
in the theoretical justifications and the evaluations of the new approach. The main contents 
of these sections is in essence not new but, to the best of our understanding, from a more 
technical point of view they contain some novelties. 

As can be surmised from (1.2), the notion of successive pps-sampling will be instrumental, 
and this sampling procedure is specified and discussed in Section 4. In particular we derive 
a variance estimation procedures for it, based on asymptotic results by the author (Rosén, 
1971a,b). This method is of interest in its own right, maybe mainly from a theoretical point 
of view, though, since successive pps-sampling is fairly seldom used in survey sampling 
practice. Anyway, the variance estimation method for successive pps-sampling provides the 
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fundamental instrument for implementing the approximation argument in (1.2), which then 
leads to the new variance estimation method for systematic pps-sampling. The details of the 
implementation are given in Section 5, which is of a fairly theoretical nature. More practically 
oriented consequences are formulated and discussed in Section 6. 

The proposed method is based on theoretical considerations as well as on its intuitive appeal. 
The theoretical reasoning contains various approximation arguments, though, notably asymp
totic results, and intuition is always unreliable. Therefore, it is not possible to make general, 
precise statements about the accuracy of the method in practical applications. To provide 
some insight into the matter, simulation studies have been carried out, which are reported on 
in Section 7. In diat section we also carry out some discussion of the validity of normal 
distribution approximations, and draw the main conclusion which runs as follows. The nume
rical findings support the conjecture that the proposed variance estimation method works quite 
satisfactorily over a very wide range of sampling fractions and, moreover, the method is com
putationally very simple. Towards mis background we want to recommend it for practical use, 
notably in situations where fairly high sampling fractions prevail. 
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2. A general frame-work for finite population inference 

As stated in Section 1, inference from systematic samples is associated with the special 
complication that, at least in most cases, it contains a crucial "subjective" ingredient. To lay 
ground for pregnant technical discussions of this aspect, we settle in this section some general 
notions, terminology and notation on inference from finite populations, with special regard to 
notions of relevance for inference from systematic samples. 

2.1 Populations, variables and characteristics 

U denotes a (finite) population with N distinguishable units, which are assumed to be labelled 
by the first N integers; U={1,2,...,N}. A variable x=(xi,x2,..,xN) on U associates a value to 
each unit in U, Xj denoting the value associated with unit i. If not stated otherwise, a variable 
is assumed to take numerical values. Arithmetic operators on variables on the same population 
should be interpreted as unit-wise operations; For variables x=(x„x2,.. .,xN), y=(yi» y2v»yN) md 
numbers a and p, a· x+p- y takes the value a- Xj+p- y{ for unit i, while x- y and x/y take 
the values x(- y, respectively Xj /yr 1 denotes the variable with value 1 for each unit in U. A 
domain, in general denoted by D, is a subset of the units in the population. The domain D 
indicator (variable) 1D is; lD(i)=l if unit i belongs to domain D and lD(i)=0 otherwise. 

For a variable x=(x1,x2,...xN), an x-characteristic %(x) is defined by x(x)=<t>(xj,x2,...xN), where 
<}> is a symmetric function (i.e. invariant under permutation of the arguments). Analogously, 
an (x,y,..^characteristic, x(x,y,...) is a function of x ^ , . . ^ , yi,y2,...yN,.., which is invariant 
under permutation of the x's, y's,.. . The population/domain characteristics which are speci
fied in (2.1) and (2.2) below, are of particular interest in survey contexts; the population 
x-total, x(x); the population x-mean, p(x); the domain D size, K(D); the domain D x-total, 
x(x;D); the domain D x-mean, p(x;D). In (2.1) and (2.2) we also emphasize that population 
total can be viewed as the central type of characteristic. 

(2.1) 

(2.2) 

Henceforth, terms as "x-characteristic" and "population characteristic" are meant to cover 
"domain characteristic" as well as "(entire) population characteristic". As is readily checked, 
all characteristics in (2.1) and (2.2) can, for appropriate choices of x and y, be viewed as 
special cases of the following general type of (x,y)-characteristic, p(x,y), called a ratio of 
totals characteristic; 

(2.3) 

2.2 Models for inference from sample observations to population characteristics 

In the following we introduce a frame-work for inference from sample observations to 
population characteristics. The frame-work could be made more general, but for the sake of 
brevity we make simplifying assumptions whenever it is in accordance with the main aim, 
which is to formulate a frame-work that is general enough to allow pregnant discussion of 
inference aspects for systematic samples. The following question is taken as the point of 
departure. 
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For a specific study variable, call it x, a sample of values, an x-sample, is (to be) collec
ted. On basis of the x-sample, one wants to make statements about one or more x-charac-
teristic. What procedures are rational and efficient for making such statements? (2.4) 

When making statements about population characteristics on the basis of a sample of values, 
one practically always confronts a situation of making statements "under uncertainty", where 
the crucial uncertainty emanates from the fact that one lacks a unique relationship between 
the sampled x-values and the x-values in the population (and an x-characteristic is determined 
by the latter). The common way to bridge this kind of "information gap", is to introduce a 
probability model which relates the mentioned two sets of x-values. We pursue this route in 
the following basic notion of "univariate inference model". We comment on multivariate cases 
later on. 

A univariate inference model for sample values for a specific study variable, call it x, 
on the population U=(1,2,...,N), is a triple (£2,{$(x); xe Q},{PX; xe Q}) as specified below. 

(i) Q is a collection of ordered N-tuples x=(x1,x2,...,xN) where Xi,x2,...,xN are presumed to 
be reals. Hence Q is some subset of RN (= the space of ordered N-tuples of reals). 

(ii) For each x=(xl5x2, ...xN) in Q, $(x) is a collection of tuples whose components are 
selected among the values offered by Xi,x2,...xN. The tuples in $(x) may have differing 
numbers of components. 

(iii) For each x in CI, Px is a probability distribution on $(x). 

The concrete interpretations of the objects in an inference model are as follows. CI specifies 
the range for x:s that are regarded to be apriori possible (or maybe rather that x:s outside CI 
are regarded as apriori impossible). Hence, in a practical situation the choice of CI should 
reflect the surveyor's (prior) knowledge of the population variable x. 

$(x) specifies the tuples of x-values that are regarded as possible outcomes of the data collec
tion, given the true population variable x=(xi,x2,...xN). $(x) is referred to as the collection of 
conceivable x-samples given x, alternatively as the x-sample space. In a practical situation, 
the choice of $(x) should reflect the surveyor's knowledge of the data collection process. In 
the above set-up it is implicitly assumed that measurements are carried out without errors, 
since sampled x-values are assumed to be chosen from the true ones. If one wants to cover 
situations with measurement errors, the model has to be extended. However, if not stated 
otherwise, we presume in the following that inference models are "without measurement 
errors". 

Next we turn to the family {Px; xeCl}. Usually the distributions Px can be chosen in a fairly 
objective/unanimous way. However, in the general setting, and notably in systematic sampling 
contexts, Px may very well be interpreted as the surveyor's "subjective" probability distribu
tion for the different conceivable x-samples under the premise that he/she knows the true x 
and also given his/her knowledge of the data collection process, but without any knowledge 
of the actual outcome of the x-sample. Thereby we adopt the view that "opinions under 
uncertainty" (always) can be represented in a meaningful and "personally unique" way by 
personalistic probability distributions. We shall not dwell on these foundational matters, 
which often are quite controversial, we just refer to the literature on foundation of statistics 
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for a fuller discussion, e.g. to the book by Savage (1954). Px is referred to as the x-sample 
distributions given x, and {Px; xsQ} is called the family of x-sample distribution. The 
choice of the family {Px; xeQ}) is (of course) the most intricate part of the specification of 
an inference model for a practical situation. We postpone the discussion of this matter for a 
while, and right now we only emphasize that we have adopted the view that it is possible to 
specify a unique (personalistic) probability distribution for the conceivable x-samples given 
x. We also make the following comment. By allowing personalistic probability distributions 
we have opened up for a "totally" Bayesian approach to inference problems, but we shall not 
pursue that route any further. In particular, we view x as a parameter (in the sense of general 
statistical theory), not as a random quantity (in the Bayesian sense). 

Under additional assumptions on die data collection process, the space $(x) of conceivable 
x-samples can be chosen with more specific structure. For sample selection there are various 
general options as e.g. "widi or without replacement", "predetermined or random sample 
size", "whether the sampled x-values carry a relevant order or not", etc. For the purposes of 
this paper it will suffice to consider sample selections without replacement, with predeter
mined sample size, denoted n, and which render the sampled x-values an order of rel
evance. In view of these assumptions we restrict to x-sample spaces of the form $(x)=x(n), 
where x00 = {(x, ,x; ,...,x. ) : (i.,L,...,i) runs over the ordered n-tuples of distinct elements 
from U}. 

When addressing a problem of the type (2.4), we presume that an inference model (£2,{x(n); 
xeQ}, {P„; xefl}) is specified. Then, the x-sample can be viewed as a random vector X=(X1( 

X2,...,Xn), in which the component order (v=l,2,...,n) agrees with the relevant sample order. 
For each x in Q, the (simultaneous) distribution of X1,X2,...,Xn is determined by Px. Expecta
tion and variance relative to Px are denoted by Ex and V„ respectively. An X-statistic, say 
K(X), is a function of the (random) sample values, K(X)= k(X1,X2,...,Xn). (For statistics we 
make no assumption about symmetric functions, though.) 

We now turn to the problem of making statements about a characteristic xOO on the basis of 
an x-sample. A statistic K(X) is said to yield unbiased (point) estimation of %(x) if; 

(2.5) 

As regards point estimation we resort on the following standard principles; (i) To be admiss
ible, an estimator should be at least approximately unbiased, preferably unbiased, (ii) Among 
(approximately) unbiased estimators, an estimator is the more preferred, the smaller its vari
ance is, or is believed to be. For the sake of brevity we leave to the reader to make precise, 
according to own preferences, the admittedly vague notion "approximately unbiased". 

A good survey should not only present point estimates for characteristics of interest, but also 
report on "uncertainty bounds" for the estimates. Also on this matter we follow die standard 
route, i.e. to give uncertainty bounds in terms of confidence intervals. Say that the statistics 
K(X) and Q(X), where Q is non-negative, are X-pivotal for die characteristic x00> if the 
following relation holds with "good enough" approximation (O denoting the standard normal 
distribution function); 

(2.6) 

Hence, if K and Q are X-pivotal for x(x), the (random) interval [K-X^Q, K+X·VQ] is a 
confidence interval for %(x), with approximate confidence level 4>(A/2). When speaking of 
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pivotal without specific "X-qualification" we assume that X=2, which makes the (random) 
interval [K-2- VQ, L+2- VQ] to an approximately 95% confidence interval for x(x)-
(Thereby we adhere to the survey sampling practice of regarding «95% as the "canonical" 
confidence level.) 

Hence, the chief problem of (estimation) inference is to find quantities K and Q which are 
pivotal for a given x-characteristic x(x), including justification of the "pivotality". The perfect 
justification would be a rigorously proved normal distribution approximation result, to the 
effect that the following inequality holds for an e that is small enough to comply with pre
vailing approximation requests; 

However, it is usually very difficult to give rigorous justifications of normal approximation 
results of the above type. It is a good deal easier, but still difficult, to prove analogous results 
on asymptotic normality. In the sequel, we shall partly rely on asymptotic results, but we 
shall also resort to a combination of the following arguments (A) and (B) (and the reader can 
chose the mixture of them, that he/she prefers). (A) There is an, although unproven, "meta-
theorem" which says that any "decent" statistic is asymptotically normally distributed, with 
its expected value and variance as normal distribution parameters, when the sample size 
increases "beyond all bounds". (B) Whatever asymptotic results one has at disposal, when it 
comes to the practical, and thereby "finite", situation, an amount of approximation will always 
remain. Therefore when establishing pivotality, at some stage one has to rely on empirical 
evaluations even if one was guided to the pivotal quantities by theoretical results. 

We shall expand somewhat on the contents of the meta-theorem which is alluded to in (A). 
A more precise, but still quite vague, version of it runs as follows. Let K be a "decent", in 
particular (approximately) unbiased, estimator for x(x) and let Q be a "decent", in particular 
(approximately) unbiased, estimator of the variance V,(K) i.e. the following relation is 
assumed to be satisfied; 

(2.7) 

Then K and Q satisfy (2.6), at least under "general conditions", provided that the sample size 
is "fairly large". In particular, K and Q are pivotal for %(x). A further aspect of "decency" 
should be that the estimator is consistent, i.e. that with increasing sample size it converges 
(in probability) to the characteristic it estimates. Also the term "consistent" is admittedly 
vague, but we sustain from a more detailed discussion of it, and again we leave to the reader 
to fill in details according to own preferences. 

So far we have only considered univariate inference models. Extensions to multivariate situ
ations can be made along different lines. One concerns inference about a multivariate char
acteristic x(x,y,...) (e.g. a correlation coefficient). Extension in this direction can be made by 
"straightforward analogy", letting the (multivariate) variable (x,y,...) play the role of the 
univariate variable x in the hitherto considerations. The details are left to the reader. 

In conclusion the above discussion amounts to the following. In the search for good pro
cedures for (estimation) inference for a characteristic %(x), the following steps should be run 
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through, (i) An inference model for x-samples is specified, (ii) Look for (approximately) 
unbiased estimators for x(x), where unbiased is relative to the family {Px; xe £2} of x-sample 
distributions. If more than one estimator candidate is available, select the one which has, or 
is believed to have, the smallest variance. Let K be an estimator of special interest (iii) Seek 
an (approximately) unbiased estimator Q of the inferential variance V,(K), again unbiased-
ness is relative to the family {Px; xeQ}. Such an estimator Q is referred to as an estimator 
of the inferential variance for K. (iv) Then K and Q are pivotal for x(x). 

2.3 Inference models with unit-sample distributions 

So far we have not required that the family {Px; xe £1) of x-sample distributions in an infer
ence model (Q.fx00; xeQJJP,; xeQ}) should have any particular structure, but for the 
assumption that Px should be a probability distribution on x(n) for every xe Q. However, in 
most practical survey situations there is additional structure to the family {P,; xe£2}, which 
emanates from the fact that an x-sample usually is generated by first selecting a unit-sample 
from the population and then observing x for the sampled units. Next we settle some notions 
in this type of context. Then we work under the presumption that missing values do not 
occur, i.e. that x-values actually can be collected for all members of the unit-sample. In 
particular we presume that non-response does not occur. As is well known, this is an excep
tional situation in practice. Its modelling requires extension, though, of the model which we 
are about to introduce, and we sustain from making that extension in the first round. 

A unit-sample distribution for the population U=(1,2,...,N) is a probability distribution/-
measure P on a specified collection $(U)={G} of subsets of U, say for definiteness ordered 
subsets. In terms of the previous notion of "x-sample distribution", a unit-sample distribution 
can be viewed as an f-sample distribution, where I is the "label variable" f=(l,2,...,N). The 
elements, a, of $(U) are referred to as conceivable unit-samples. The sample inclusion 
indicators, I„I2,...,IN, are the following random variables on $(U); I~l if i is contained in s 
and lj=0 otherwise. The inclusion probabilities of the first and second orders for P are de
fined as follows, where E denotes expectation with respect to P; 

(2.8) 

(2.9) 

Under additional assumptions on the sampling process, the set $(U) can be chosen with more 
structure, than being just a collection of subsets of U. Unless otherwise stated, we presume 
mat a unit-sample is selected without replacement, has prescribed sample size n (i.e. that 
IJ+IÎ+.-.+IN = n) and that it carries a relevant order. Then $(U) can, and will, be chosen as 
N00 = the collection of all ordered n-tuples of distinct elements from (1,2,...,N). 

For a population U with a variable x=(xj,x2,...,xN) and a unit-sample distribution P, the corre
sponding induced x-sample distribution, denoted P°x, is defined as follows (as before 
X=(X1,X2,...,Xn) is the x-sample viewed as a random vector); 

(2.10) 

If all units in U have the same inclusion probability, the unit-sample is said to be self-weight
ing. An example is provided by the "prototype" for all sampling procedures, simple random 
sampling. Size n (ordered) simple random sampling (without replacement) from U (n£N), 
is specified by the unit-sample distribution P which has N00 as the set of conceivable samples 
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and gives each element in N(n) the same probability. Simple random sampling with sample 
size n will be referred to by the notation SRS(n). 

We now return to inference. An inference model is said to have unit-sample distribution, 
if it is of the form (Q,tfn); xeQ},{Px<>x; xeQ}). The family {Px; xeQ) is then called the 
family of unit-sample distributions. An inference model with unit-sample distribution is said 
to have canonical unit-sample distribution P, if P„=P for all x€ Q. The most common situ
ations in sample survey practice lead to inference models with canonical unit-sample distribu
tions, which therefore can be regarded as sort of "standard" model. However, as we shall see, 
models with non-canonical unit-sample distributions are highly relevant in connection with 
systematic samples (and also in other cases). The main reason why models with canonical 
unit-sample distributions are most common in sample survey practice is as follows. On good 
grounds there is a strong recommendation for sample survey practice, which is also widely 
followed, that variable samples, say x-samples, should be collected by first selecting a unit-
sample, and then observing the x-values for the sampled units. Moreover, it is recommended 
that the unit-sample should be generated by an "objective" random mechanism, which oper
ates independently of the specific x-values (and of the values of other study variables). When 
this type of x-sample selection is employed, it is usually non-controversial, whatever be the 
surveyor's views on foundation of probability and statistical inference, that the relevant 
inference model is, at least in essence, (Q,{x(n); xeQ), {P°x; xeQ}), where P follows from 
the random selection mechanism. Thereby we have also indicated at least one general answer 
to the question which was posed earlier: "How to select the family of x-sample distributions 
in a practical situation?" Another, but much more technical, reason for the interest in the 
model (Q,{x(n); xeŒ), {P°x; xeQ}) is the following. Under an inference model with canoni
cal unit-sample distribution, there is a general, and "smooth", estimation theory available, 
known as Horvitz-Thompson theory, which is briefly reviewed in the next sub-section. 

We conclude this section with some further comments on multivariate situations. In most 
practical sample surveys, the estimation interest concerns characteristics for many different 
study variables, x(l),x(2),...,x(m) (e.g. sex, age,..,income for individuals), the values of which 
are observed for the units in a (common) unit-sample. We shall not consider the estimation 
problems for the different variables as "simultaneous", though, but as "separate". Then, one 
specifies a collection of univariate inference models; (Q„{x(l)(n); x(l)efl1},{PI(1); x(l)efl1}), 
(Q2,{x(2)(n); x(2)€Q2},{Pï(2); X(2)GQ2}), .... (^.{xfa)00; xOn^QJ . fP^ ; x d n ^ Q J ) . In 
general, these models need not be related in any particular way, but for the fact that die same 
population size and the same sample size occur in all of them. Even under the assumption 
that each separate model has canonical unit-sample distribution, the unit-sample distributions 
P„P2,.. .,P„ may be taken to be different, i.e. the collection of inference models may be of 
the form (Î21,{x(l)(n); x(l)€QI},{P1ox(l); x(DeQ,}), (02,{x(2)(n); x(2)€i22},{P2«x(2); 
x(2)€Q2}), .... (^..{xCm)00; x(m)eQm},{Pm<>x(m); x(m)€fi^}). In many (not to say most) 
situations, though, it is natural to employ the same unit-sample distribution P in all models; 
Pi= P2=...=Pra =P. If so, we say that P is uniformly canonical for the variables x(l),x(2),.. 
.,x(m). 

The reader may mean that the above frame-work for multivariate situations gives bit of "over
kill capacity" as regards practice. We admit that one only seldom goes outside the frame-work 
with uniformly canonical unit-sample distributions. However, systematic sampling, the main 
concern of this paper, is one of the "exceptions". In Section 3, notably in Examples 3.1 and 
3.2, we present more concrete examples of the various possibilities which are discussed above. 
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2.4 Horvitz-Thompson theory 

We consider (estimation) inference from an x-sample under an inference model with unit-
sample distribution, (Q,{x(n); xeQ}, {PK°x; xeQ}). As usual let Ii,I2,...,IN be the inclusion 
indicators and X=(Xj,X2,...,XN) the x-sample viewed as a random vector. A linear X-statistic 
with weight variable w=(w„w2,...,wN), where W!,w2,...,wN are regarded as known for all units 
in U, is a statistic of the form; 

(2.11) 

Under the assumed model, the inclusion probabilities (of first as well as second order) depend 
on x, and we use the notation rc(x)=(7t1(x),jc2(x),...,rcN(x)), where ïti(x)=PI(Ii=l). By taking 
expectation in (2.11) and recalling (2.8) we get; 

(2.12) 

In the rest of this section we presume that the unit-sample distribution is canonical, denoted 
P, and, hence, that the inference model is (Q,{x(n); xeQ}, {P°x; xe£2}). Then the inclusion 
probabilities no longer depend on x, and we return to the notation of (2.8) and (2.9). More
over we assume that K^ for i=l,2,...,N. Then the following well-known result follows read
ily from (2.12). The statistic 

(2.13) 

i 

yields unbiased estimation of the population x-total t(x) whatever Q is. In (2.13), and hence
forth, we employ the customary notation that the "hat"A signifies that the statistic gives (app
roximately) unbiased estimation of the characteristic underneath the hat. (The previous state
ment would be true also for a general family (Px°x; xeii} if %{is replaced by 7tj(x) in (2.13). 
However, TCj(x) would in the general case be unknown, and the statistic would be "un
confutable" in the practical situation.) The statistic in (2.13) is referred to as the Horvitz-
Thompson estimator, shorter HT-estimator, for the population total x(x). Moreover, the 
HT-estimator is under very general conditions (to the effect that Q is not "extremely meagre") 
unique as unbiased linear estimator of x(x). As a follow-up to (2.13), the HT-estimator for 
a ratio of totals characteristic (see (2.3)) is defined as stated in (2.14). This estimator is, 
however, only approximately unbiased in the general case, but consistent under quite general 
conditions. 

(2.14) 

Our subsequent estimation efforts will relate to the problem of finding statistics Q so that 
T(X)HT and Q are pivotal for T(X), and more generally so that p foy^ and Q are pivotal for 
p(x,y). Thereby the interest will focus on variances of linear statistics, notably HT-estimators. 
However, for the sake of "simplicity of formulas" we shall let the basic investigations relate 
to the "standardized" version of a linear statistic which is constituted by the sample sum. We 
reserve the letter T for this statistic, and we allow (according to convenience) for both of the 
notations T(X) and T(x); 

(2.15) 

Restriction to sample sums means no loss of generality, though, because any linear statistic 
can be viewed as the sample sum for a suitably transformed variable, as stated below; 
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(2.16) 

By employing (2.16), a result for sample sums is readily transformed to a corresponding 
result for linear statistics. In the following Sections 3, 4 and 5 we mainly confine the studies 
to the behaviour of sample sums, but in Section 6 we specialize to HT-estimators. We con
clude this sub-section with a brief review of some well-known results on variances and vari
ance estimation for sample sums. The inference model is still assumed to be (Q,{x(n); xe-
Q},{P«x; xeQ}). The inferential variance for T(X) is given by the following formula; 

(2.17) 

Provided that 7iy > 0 for all ij=l,2,..,n, the statistic in (2.18) below yields unbiased estimation 
of the inferential variance VJT(X)], whatever Q is; 

(2.18) 

Under the premise of prescribed sample size, there are some well-known alternative (but 
algebraically equivalent) forms of the right hand sides in (2.17) and (2.18). 

The more general HT-estimator in (2.14) is, however, not a linear statistic in the general case, 
it is a ratio of linear statistics. Therefore, (2.17) and (2.18) do not apply directly to yield 
results pertaining to p(x,y). In fact, there exists no closed form expression for the variance of 
p(x,y) (not even for its expected value), and in line with that no closed form unbiased estima
tor of the inferential variance. This obstacle is usually circumvented by resorting to so called 
Taylor approximation, which leads to the following well-known approximate variance formula 
(in which the middle form requires that p(y)>0, and the right hand form also that p(x)>0)); 

(2.19) 

As can be seen, the formula (2.19) brings problems about the variance of the general HT-
estimator in (2.14) back on problems about the variance of a linear statistic, which in turn (by 
(2.16)) have been brought back on problems on the variance of a sample sum. 

Example 2.1: In the special case when P is size n simple random sampling, (2.17) and 
(2.18) specialize to the following well-known formulas; 

(2.20) 

where o^x) and S2(X) denote population variance and sample variance respectively i.e., with 
X denoting the sample mean; 

(2.21) 
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3. Systematic sampling and inference from systematic samples 

3.1 Systematic pps-sampling 

There arc various (minor) variations on the theme of systematic pps-sampling, and we start 
by stating the definition which will be used throughout this paper. As usual, let U=(1,2,...,N) 
denote a population. We presume that a list of the population units is available for use as 
sampling frame. When drawing a systematic unit-sample, the order of the units in the sampl
ing frame plays a crucial role. We shall soon elaborate on that matter, but until further notice 
we assume that an order has been decided upon, and for simplicity we assume that the labels 
1,2,...,N also specify the frame order. Moreover, the sampling frame is assumed to contain a 
distinguished variable s=(s1,s2,...,sN), called the size (measure) variable, all values of which 
are positive. Define the cumulative sizes c=(cl,c2,...,cN) by c0=0, C—SJ+SJ+.-.+SJ, i=l,2,...,N, and 
call 3j = (Ci.j.cJ the size interval associated with unit i, i=l,2,...,N. 

A size n systematic pps-sample from the (ordered) population U, drawn with size 
measure s is selected by executing the following steps (i)-(iii). 

(i) Determine the sampling interval d by d = Cj/n = (s1+s2+...+sN)/n. 

(ii) Select the random starting point B, with uniform probability distribution on the 
interval (0,d]. Then compute the (random) points Bv = B, +(v-l)- d, v=2,3,...,n. 

(iii) The unit-sample consists of the units which are associated with the size intervals 
3 into which the points B„B2,...,Bn fall. The sample is regarded to be ordered in 
the same way as the B:s. 

If all sizes are equal, i.e. if Sj =S2=...= SN, the sample is called a simple systematic sample. 

In order that the steps (i)-(iii) with certainty shall lead to a sample with n different units (and 
not fewer), it is necessary and sufficient that no size interval is longer than the sampling inter
val, i.e. that the following condition (3.1) is met. Unless stated otherwise, (3.1) is assumed to 
be in force in the sequel. 

S i<icN/n, i=U,...,N. (3.1) 

Remark 3.1: If (3.1) is not satisfied in a practical situation, one usually proceeds as follows. 
Units which violate (3.1) are (with certainty) taken out for observation. Then condition (3.1) 
is checked for the "remaining population" and the "remaining sample size", and if (3.1) is still 
violated, further units are brought to the "certainty part" of the sample, and (3.1) is checked 
again, etc. Ultimately (3.1) becomes satisfied, and then a systematic pps-sample of the remain
ing sample size is selected from the remaining population. 

In some applications, though, one executes the steps (i)-(iii) as they stand even if (3.1) is not 
satisfied. Then the sample may contain replicated units, and the number of different units in 
the sample is a random quantity. • 

The above steps (i)-(iii) specify a unique unit-sample distribution, which depends on the frame 
order, though, and next we give a more formal specification of this dependence. Then we have 
to distinguish between two kinds of labels, which we, for simplicity, let coincide above. Re-
denote the identifying labels by setting them in parenthesis; U=((1),(2),...,(N)), and let 
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1,2 N be the frame (order) labels. The relation between the two types of labels is specified 
by a permutation q=(q„q2,...,qN) of (1,2,...,N), referred to as a frame order, with the following 
interpretation. The first unit in the frame is the one with (identifying) label (q,), the second 
is the one with label (q^, etc. The values of the variable x=(x(1),x(2),...,x<N)) on U are given 
frame orders as follows; 

Under q the frame order for the x-values is (x(q),x(q),...,x(q}). 

Given the frame order q, the sample selection steps (i)-(iii) in Section 3.1 are applied, with 
1,2,...,N in s, c and 3 interpreted as frame order labels. Thereby, for each permutation q a 
unit-sample distribution is specified, which we denote P(· ;n;N;s;q). However, unless other
wise stated, we regard N as "canonical" and suppress it, leading to the shorter notation 
P(- ;n;s;q). We also use SYS as a mode for referring to systematic pps-sampling, and combi
nations like SYS(n;s;q). The notation SYS(n;s) refers to systematic pps-sampling with some 
q-order, which may be more or less unspecified, though. Analogously, SSYS refers to simple 
systematic sampling. The collection of all permutations of (1,2,...,N) is denoted by (N!). 

It is readily realized that P(- ;s;q) and P(- ;t;q) coincide if the size measures s and t are 
proportional, i.e. if for some constant k we have; s~ k- tj, i=l,2,...,N. This many-to-one 
correspondence between size measures and unit-sample distributions is eliminated if one con
fines to size measures which are standardized to the effect that the sizes sum to 1. The 
standardized version of the size measure s, denoted z(s)=(z1(s),z2(s),...,zN(s)), is; 

(3.2) 

On the other hand, for different frame orders q, and q2, P(· ;s;qt) and P(· ;s;q2) are in 
general different. All P(- ;s;q) with the same s have, however, the same "marginal distribu
tions" in the sense of inclusion probabilities, as is stated in the following well-known result. 

For every frame order qe(N!), P(- ;n;s;q) has the inclusion probabilities 
(3.3) 

Remark 3.2: From (3.3) and (3.2) it is seen that simple systematic sampling SSYS(n;q) is 
self-weighting, whatever be the frame order q and, hence, has inclusion probabilities n/N. • 

3.2 Inference models 

We now turn to inference from x-values in a SYS-sample, and we adhere to the general infer
ence frame-work which was introduced in Section 2. We start by stating a special structural 
assumption on inference models for SYS-samples The concrete interpretations of the assump
tion are discussed afterwards. 

DEFINITION 3.1: A univariate inference model for x-values in a SYS(n;s)-sample is 
assumed to be of the form (Q,{x(n); xeQ},{Px°x; xeQ}), where the family {Px; xeQ}) 
of x-sample distributions has the following structure; 

(3.4) 

where {h ·̂ ); xe Q} is a family of probability distributions on the set (N!) of all permu
tations q of (1,2,...,N), i.e.; 

(3.5) 
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Now to the interpretation of the above definition. In general an inference model shall codify 
the "uncertainty" which depends on lack of a unique relation between sampled x-values and 
those in the population. In the SYS case, an inference model for the variable x shall formalize 
two main sources of uncertainty; the randomness in the selection of the starting point in step 
(ii) above, and the lack of precise knowledge of the frame order for the x-values. To that end 
the above model comprises two main ingredients; a family {P(· ;n;s;q); q€ (N!)} of unit-
sample distributions and a family {h,(- ); xe CI] of frame order distributions for x. The first 
family formalizes the uncertainty which enters via the random selection of the starting point, 
and this family is specified in Section 3.1. 

The interpretation of the family {h,(- ); xe £1} is usually more intricate. Its scope is to codify 
the uncertainty which emanates from the fact that one does not have full knowledge of the 
frame order for the x-values. In most practical situations the sampling frame order is not 
generated by an "objective" random mechanism, though (which would specify h,(' ) in an 
"objective" way). On the contrary, the surveyor usually strives for a sampling frame arrange
ment which renders as much "regular trend" as possible to one or more of the study variables. 
Therefore, in general {h^· ); xe Q,} should reflect the "remaining uncertainty" about the frame 
order for the x-values, given the surveyor's knowledge about the frame ordering process. 
Normally {h,(- ); xsQ) has to be viewed as a family of subjective/personalistic probability 
distributions, which reflect the surveyor's opinion about the frame order for the x-values, and 
this will be our main view on {h^- ); xe£2} in the following. 

Among the possible opinions on the frame order for x, there is a distinguished one which we 
refer to as total ignorance of the frame order for x, or totally random frame order for x. 
In everyday language this state of knowledge would be described in words like: "I have no 
idea of the structure in the frame order for the x-values. Any order is as likely as any other." 
This type of opinion is specified formally as follows; 

(3.6) 

Under assumption of total ignorance of frame order the following statements hold true, as 
is well known and readily checked. 

(i) The family {P,; xeQ) of unit-sample distributions in the SYS(n;s) inference model is a 
family with canonical distribution. This canonical unit-sample distribution is called 
randomized systematic s-sampling with sample size n. It will be denoted by PR(· ;n;s), 
and is also referred to by RSYS. A somewhat more formal definition of PR is as follows. 
The "total" sample selection is carried out by first implementing a totally random order 
in the sampling frame, and then selecting a unit-sample according to the steps (i)-(iii) in 
Section 3.1. (3.7) 

(ii) The RSYS-procedure corresponding to simple systematic sampling SSYS(n) is 
nothing but simple random sampling SRS(n). (3.8) 

Situations where the assumption (3.6) is regarded as inappropriate are commonly referred to 
by saying that the x-values exhibit trend in their frame order. We illustrate the notion of 
frame order distribution in the following examples. 

Example 3.1: a) The frame is ordered with the aid of an auxiliary variable a=(ai,a2,...,aN), the 
values of which are known for all units in the population. The surveyor means that the vari
able a and the study variable x=(x„X2,...,xN) are related according to a model Xj = k· aj + % 
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i=l,2,...,N, where k is a known constant and ( e^ , . . . ^ ) are independent, identically distrib
uted random variables with known distribution. The e's should usually be viewed as represent
ing opinions rather than as effects of some "physical" random mechanism. If one prescribes 
a mode for ordering the units in the sampling frame by their a-values (e.g. by increasing 
a-values), the family of frame order distribution {h ·̂ ); xeQ} for x is determined, even 
though the determination is considerably implicit, and it will contain a, k and the e-distribution 
as "parameters". 

Comment: The determination of [hj^'); xe Q} which is indicated above contains various ass
umptions (about linearity, independence and distribution form), assumptions which usually are 
subjective in nature. However, this fact does not introduce any new element into the inference 
model. For SYS-sampling the family {h,(' ); xe il}, and thereby also the family {Px;xeQ}, 
are practically always to be interpreted as families of subjective probability distributions. 

b) For k=0, the above determination of the family {h,(· ); xeQ} leads, in the general case, 
to a family which does not satisfy (3.6). The special case k=0 is of great practical interest. Its 
interpretation is: "The values of the variables a and x are unrelated." Then the above determi
nation of {hjO ); xe Q} leads to (3.6), whatever be the (common) distribution of the e's. This 
fact is often formulated as follows: "Frame ordering with the aid of an auxiliary variable a 
which is unrelated to the study variable x leads to total ignorance of the frame order for the 
x-values. 

c) A consequence of what is said in a) and b) above runs as follows. Let x and y be two study 
variables. If the frame is ordered with the aid of an auxiliary variable a, it may very well 
happen (if x and y are related to a in different manners), that h, and hy differ, leading to 
different Px and P r In particular, it may ver well happen that the x-values exhibit trend in 
their frame order, while there is total ignorance of the frame order for the y-values. • 

Example 3.2: Let, as usual, s=(Si,s2,...,sN) be the (known) size measure and x=(x1,x2,...,xN) a 
study variable. Assume that the surveyor thinks that x and s are related according to die model 
Xj = k- Sj- (1+Ej), i=l,2,...,N, where k is a constant which may be unknown, and the e's are 
independent, identically distributed random variables with interpretation as in the previous 
example. Introduce the following transformed x-variable: y=x/s=(xi/s1,x2/s2,...,xN/sN). Then the 
previous relation transforms to y—e'j (= k- (1+e^), i=l,2,...,N, where (e'„e'2,...,e'N) are inde
pendent, identically distributed random variables. As stated in the previous example, this leads 
to a family {h,(· ); yeQ} of frame order distributions for y, which satisfies (3.6). Hence, 
transformation of a study variable may cause substantial change of the family of frame order 
distributions. • 

In more pronounced probability language, an inference model with the structure (3.4) + (3.5) 
can be described as follows. Given x, the distribution Px is the unconditional (or mixed) unit-
sample distribution which is specified by the conditional distributions given the frame order, 
{P(· ;n;s;q); qe (N!)}, and the mixing distribution h ^ ). Let expectation and variance relative 
to the "conditional" distributions P(· ;n;s;q) be denoted by E(- |q) and V(· |q) respectively 
and referred to as the conditional mean respectively the conditional variance given the 
frame order q. Then, (3.4) leads to the following expectations formula; 

(3.9) 

We conclude this sub-section by commenting on multivariate situations. The following is a 
continuation of the discussion at the end of Section 2.3. We assume that a SYS(n;s) sample 
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is (or is to be) selected, and that the values of several study variables, say x(l),x(2),.. .,x(m), 
have been (or are to be) observed for the unit-sample. We describe the inference situation by 
a collection of separate univariate SYS(n;s) inference models, and we employ the following 
notation; P(- ;n;s;hj denotes the x-sample distribution which is given by (3.4) and (3.5) when 
the frame order distribution is h,. The collection of univariate inference models is; (Q„ {x(l-
)(B); x(l)eQ1},{P(-;n;s;hI(1))<»x(l); x(l)eû,}), (ft2,{x(2)(B); x(2)efl2},{P(- ;n;s;hx(2))ox(2); 
x(2)eQ2}) (^.,{x(m)w; x(m)eQJ,{P(- ;n^\m^(m); x(m)€flLj). 

As was discussed in Example 3.1, the families ( h ^ · ); xeQ^} of frame order distributions, 
k=l,2,...,m, may differ between the study variables. Hence, for SYS-sampling it can be quite 
reasonable to employ different unit-sample distributions Px for different study variables, even 
though the same unit-sample is used to collect observations on all study variables. The reason 
is that the surveyor's opinion on frame order may differ among the variables. For instance, 
it may be quite reasonable to have the canonical unit-sample distribution PR for some subset 
of the variables (reflecting total ignorance of frame order for these variables), but have other 
unit-sample distributions for the other variables. In such a situation, PK is uniformly canonical 
for a particular subset of variables, but not for the entire collection of study variables. 

3.3 Point estimation 

Here we shall consider estimation based on x-observations on a SYS(n;s) sample, under the 
general inference model (QJx^xeQKfP^ox-.xeŒ}), which is assumed to comply with 
Definition 3.1. Let I1,I2,...,IN be the (frame label) inclusion indicators and let 7i(x)=(jti(x),7t2(x),. 
..,7tN(x)) be the inclusion probabilities. Then, as a straightforward consequence of (3.9), (2.8) 
and (3.3) we have; 

(3.10) 

Similar reasoning using (2.12) and (3.10) yields for a linear statistic L (see (2.11)); 

(3.11) 

(3.10) and (3.11) state that inclusion probabilities and expected values for linear statistics are 
the same under all SYS(n;s) inference models, whatever be the frame order distribution h,. 
Hence, although a SYS(n;s) inference model in the general case has a non-canonical unit-
sample distribution, the notion of HT-estimator (see (2.13) and (2.14)) applies, and moreover 
HT-estimators have the usual unbiasedness properties. In view of (3.3), the HT-estimator for 
a population total under a SYS(n;s) model has the following appearance; 

(3.12) 

Remark 33: In view of the claim in Remark 3.2; For SS YS the HT-estimator of the popula
tion x-mean is simply the sample mean X, i.e. pHT(x)=X. • 

The following inferential variance analogue to (3.9) is a straight-forward consequence of the 
definition of variance, (3.9) and the above-mentioned fact that a linear statistic L has "frame 
order independent expectation"; 

(3.13) 

17 



For the "standard" linear statistic, i.e. sample sum, an explicit formula for the inferential 
variance is obtained by combining (3.13) with the result below on the conditional variance 
given the frame order, the justification of which is left to the reader. 

(3.14) 

where 5,(u) indicates whether unit i is included or not in the sample when the basic random 
point falls in u, i.e. 8j(u)=l if 3jO{u, u+d, u+2· d,..., u+(n-l)· d} is non-empty, and Sj(u)=0 
otherwise, (Ku^d. 

The theoretical inferential variance Vx plays (at least) two important roles. One is that it gives 
information on the precision of an estimator, and another that it is a main instrument for find
ing pivotal quantities (see Section 2.2). The chief interest in this paper relates to the latter 
aspect, but before we enter that topic in more detail, we shall employ the above formulas to 
make some general comments on estimation in SYS sampling situations, and to provide back
ground for the comments we start with an example. 

Example 33: Let x=(x(1),x(2),...,x(N)) be a variable on the population U, having mean u(x). We 
assume that u(x)=0, which in fact means no loss of generality in the following, just a technical 
simplification. Consider SSYS(n) sampling from U and, as usual, let T(X) denote the sample 
sum for x. Also as usual, let q denotes a frame order, which implies a frame order for the 
x-values (see Section 3.1). 

Case a: Here we assume that N=2· n, which means that the sampling fraction is V£. Then, 
for a fixed frame order q there are only two possible unit-samples, namely (in frame order 
labelling); (1,3,5,...) and (2,4,6,...). Hence, the conditional distribution of T(X) given q has the 
following two-point distribution; 

(3.15) 

The following formulas for conditional variances are straightforward consequences of (3.15), 
the assumption that u(x)=0 and Remark 3.3 which states that pHx(x)=T(X)/n; 

(3.16) 

Let XQ denote the particular x which is specified by x(1)= x ^ ...= X(2D+1)= +1 and X(2)= X(4)=... 
= x(2n)= -1, and let 1 denote the identity permutation. (A situation of the type (x^l) is com
monly referred to as a periodic case.) From (3.16) we get; 

(3.17) 

Now look at V,[T(X) |q] as a function of q, while x is regarded as fixed. Then, with a prob
ability distribution h,(' ) on (N!), VM[T(X)|q] can be viewed as a random variable on (N!). 
Presume that h, is given by (3.6), i.e. that we are in the case with total ignorance of frame 
order. Then, by virtue of (3.8), the x-sums in (3.16) can be viewed as sample sums for x 
under SRS(n). Moreover, assume that n is large enough and that x is "regular" enough for the 
SRS central limit theorem (CLT) (see Hâjek (I960)) to apply with good approximation. 
According to the CLT, the x-sums in (3.16) are approximately normally distributed with mean 
0 (since p(x)=0) and variance n· o^x)^ (see (2.20)), which leads to the following; 

Under (3.6) Vx[T(X)|q] behaves (with good approximation) as H2- n- o2(x)/2, 
where H is a standard normal random variable. (3.18) 
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Case P: We modify the situation in Case a to the effect that instead of N=2- n, we assume 
that N=k- n, where k ranges over the natural numbers. Hence, the sampling fraction is 1/k. 
The frame order distribution h, is still assumed to be according to (3.6). 

The following formula is a consequence of (3.8) and (2.21); 

(3.19) 

The proof of the following assertion is not entirely straight-forward, but it is left to the reader. 

Under (3.6) V,[T(X) |q]/n converges in P^-probability, as k-oo, to the uncondi
tional variance Vx[T(X)]/n (which in turn converges to cr^x)) (3.20) 

• 
With the above examples as background we now make some general remarks. 

Remark 3.4: Under any SYS(n;s) inference model, the HT-estimator in (3.12) is "decent" in 
the sense that it is unbiased (relative to the inferential model). However, it does not necessar
ily be "decent" in the sense that it yields consistent estimation. If it does or not, depends 
essentially on the family {h,(- ); xeQ} of frame order distributions. 

The above general statement is illustrated in Example 3.2 (which concerns SSYS sampling). 
It is seen from (3.17), that if h,(- ) is specified by h,(l)=l, then the HT-estimator of u(x) is 
not consistent. On the other hand, if \(- ) is given by (3.6) then the HT-estimator is consist
ent, as is seen from (3.19). 

The first h,(- )-family is quite extreme, though, in having a periodic trend. In general trends 
in x-values usually pull in the opposite direction, and the following holds in the SSYS case. 
Trend in the frame order normally leads to reduction of the inferential variance, compared 
with the case with total ignorance of frame order, and hence in particular "improves" on the 
consistency of HT-estimators. Illustrations of the claim can be found in most text-books on 
sampling theory, and also in e.g the review papers by Bellhouse (1988) and Murthy & Rao 
(1988). • 

Remark 3.5: When the sampling fraction is non-negligible, conditional and unconditional 
inferential variances are substantially different notions. 

The statement is illustrated in Case a in the example, where (3.18) tells that the conditional 
variance VJT(X) |q] may vary considerably, and in a highly erratic way, if the frame is 
reordered (while V,,[T(X)] is a constant, given x). A practical consequence of this is as 
follows. If one makes simulation experiments concerning variance estimation in cases with 
large sampling fraction, it makes a great difference whether or not the frame order is selected 
anew (according to a prescribed h j for each new simulation case. 

However, when the sampling fraction is small, the distinction between conditional and 
unconditional inferential variance is much less important, and the difference more or less 
disappears as the sampling fraction tends to 0. This is illustrated for SSYS by the statement 
in (3.20). (In the author's view, most text-books are quite unclear on the distinction between 
inferential variance and conditional variance given the frame order. However, an excuse is 
given by the previous statement together with the fact that most sample surveys have small 
sampling fractions.) • 
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3.4 Brief review of estimation of inferential variances (for sample sums) 

We now turn to estimation of inferential variances on the basis of x-samples X=(X„X2,...,X1I) 
generated by SYS(n;s) sampling. We presume an inference model (Q,{x(B); xe£2},{Px<>x; 
xeft}) in accordance with Definition 3.1. When restricting to sample sums (as we do for 
notational simplicity), the characteristic to be estimated is Vm(X1+X2+ ...+XJ, x€ Q. As a help 
to keep different variance estimator candidates apart, we introduce the following notational 
system. Generally, an "inferential variance estimator for sample sums" is referred to by VESS, 
and when applied to the sample X, by VESS[X]. Distinction between different estimators is 
made by notation of the type VESSfX;"label"], where the "labels" will be introduced success
ively. We treat the cases with "total ignorance of frame order" respectively with "trend in 
frame order" separately. 

3.4.1 Variance estimation under total ignorance of frame order 

Throughout this sub-section we presume that (3.6) is in force, i.e. that the surveyor "knows 
next to nothing" about the frame order for the x-values. By (3.7) the inference model then is 
(Œ.fx(n); xeQ},{PRox; xeQ}), where PR is randomized systematic sampling. Thus, the 
inference model has canonical unit-sample distribution and, hence, the results in Section 2.4 
apply. For PR holds, as is readily checked, Tty > 0 for i j=l,2,...,N, and accordingly the variance 
estimator formula (2.18) could be applied. Unfortunately, though, so far nobody has managed 
to compute the corresponding Tty exactly. In lack of an exact solutions, one resorts to various 
approximation approaches, which are briefly discussed below. Also the novel approach to be 
discussed in the subsequent sections, belongs to the category "approximation solutions". 

First we comment on a special case where an exactly unbiased variance estimator in fact can 
be exhibited under the prevailing presumption about total ignorance of frame order, namely 
the SSYS(n) case. By virtue of (3.8) and Example 2.1, the estimator in (3.21) below yields 
unbiased estimation of the inferential variance; 

(3.21) 

Next we turn to approximation solutions of the variance estimation problem in the general 
SYS(n;s) case. The simplest is based on the following heuristic argument. 

At least if the sampling fraction is small, a SYS(n;s) sample behaves very much like a 
sample which is generated as follows. Instead of selecting the points Bj,B2,.. .,Bn as stated 
in step (ii) in Section 3.1, they are selected independently of each other, each one with 
uniform distribution on the whole size interval [0,cN]. (3.22) 

Under the sampling procedure in (3.22), the sampled x-values are independent, identically 
distributed (iid) random variables. For iid random variables the following well-known estima
tor yields unbiased variance estimation; 

(3.23) 

The estimator (3.23) is frequently employed in SYS(n;s) practice. When doing so, one relies 
on an approximation of SYS(n;s), which is a without-replacement sampling procedure, by a 
with-replacement sampling procedure. This kind of approximation "feels", and is, quite 
reasonable when the sampling fraction is small, but it "feels", and is, the more questionable, 
the larger the sampling fraction becomes. Formulas (3.21) and (3.22) show that, in the SSYS 
case, the "defect" in using (3.23) amounts to omission of the finite population correction factor 
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(fpc) (1-n/N). On intuitive grounds one "feels" that also in the general SYS(n;s) case, (3.23) 
should be adjusted by some sort of fpc. A simple and near at hand idea is to use the "tradi
tional" fpc, i.e. (1-n/N). This choice transforms VESS[X;b] into VESS[X;a]. Other fpc's have 
been suggested in the literature, we refer to Wolter (1985), pp 286-290 for a review. However, 
a common feature for all suggestions is that they are considerably ad hoc. 

To the best of our understanding, VESS[- ;a] and VESS[- ;b] are the variance estimators 
which are most widely used in SYS-practice, the latter when the sampling fraction is negli
gible and the former when it is non-negligible, but "moderate". VESS[· ;a] can also be viewed 
as a "combination" of the two. This "strategy" works quite satisfactorily as long as one does 
not face situations with "strongly non-negligible" sampling fractions (say roughly 25% or 
more). However, as mentioned in Section 1, such cases do occur in practice, and they consti
tute the main concern of this paper, which is to find a variance estimator which performs 
satisfactorily over a wide range of sampling fractions (preferably the entire range). 

An approximation approach of a different kind is due to Hartley & Rao (1962). The crucial 
ingredient in their approach is an approximation of the second order inclusion probabilities 
Tty via an asymptotic (as N and n become large) expansion. A variance estimator is then 
obtained by applying (2.18) with the approximate version of 7Cy. The resulting estimator has 
cased controversy, though, and counterexamples to the Hartley-Rao approximation claims can 
be found in e.g Hâjek (1981), Chapter 10. Anyway, either it is good or not, the estimator is 
presented below, the z's being the normalized size measures in (3.2); 

(3.24) 

3.4.2 Variance estimation when the study variable has frame order trend 

There are two main approaches to estimation of inferential variances in situations where one 
knows, or believes, that the study variable exhibits trend in the frame order. The approaches 
will be referred to as modelling of trend respectively frame segmentation, and they are 
discussed separately in the following. 

Modelling of trend 

From a technical point of view, trend modelling amounts to specification of a particular, and 
explicit version of the family {!!,(•); X€ CI} of frame order distributions. To qualify as "trend 
modelling", the specification should differ from (3.6). 

As discussed in Section 3.3, the choice of {h,(' ); xeQ) will not affect the unbiasedness of 
HT-estimators, but it will affect inferential variances as V,[T(X)]. Under a particular family 
{h^- ); xe£2} a first question will therefore be to find an, exact or approximate, expression 
for VX[T(X)], as a basis for the search for a pivotal variance estimator. Ideally one should also 
justify the pivotality, by proving some result of the type (2.6). Under general SYS(n;s) 
sampling this is a huge program to accomplish, and we shall not enter any details in this 
paper, only make some comments. 

One can claim that trend modelling is less relevant for general SYS(n;s) sampling (which is 
our main concern) than it is for SSYS sampling, using the following type of argumentation. 
When estimating a total x(x) on the basis of x-values in a SYS(n;s) sample, one can disting
uish between two alternatives (which are somewhat extreme, though) for the relationship 
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between the study variable x and the auxiliary size variable s. (i) The variable s is strongly 
related to x and the SYS(n;s)-procedure was chosen to achieve good estimation precision due 
to appropriately varied inclusion probabilities. Then the interesting statistics are the correspon
ding HT-estimators, the essential ingredients of which are sample sums for the transformed 
variable x/rc. Then one is typically in the type of situation that was discussed in Example 3.2. 
If so, the frame order for X/TC is described by total ignorance of frame order, whatever pro
cedure is used to order the frame, (ii) Often frames are ordered by s, and we assume that this 
is the case. Assume, that x is (fairly) unrelated to s, being a study variable of "minor import
ance". Then, the discussion in Example 3.1 applies to x as well as to x/s, and their frame 
orders are both modelled by total ignorance of frame order. In both cases (i) and (ii) one 
comes to the conclusion that total ignorance of frame order is a good description. However, 
even if the arguments were meant to support the claim that total ignorance of frame order is 
the relevant model in quite many SYS(n;s) situations, we certainly do not claim that this is 
always true. However, we shall not pursue the trend modelling approach any further in this 
paper, but for the frame segmentation approach which is discussed below, and which offers 
a method for handling situations with frame trend for a study variable. 

Next we consider the SSYS case and view s as an auxiliary variable which is strongly related 
to the study variable x. Then, the "x-information potential" of s is not "used up" for the 
purpose of creating appropriately varying inclusion probabilities. Hence, frame ordering with 
the aid of s can have considerable variance reducing effect, and we presume that the frame 
is ordered in that way. A consequence of this is that variance estimation based on total 
ignorance of frame order (or equivalently based on SRS) will be misleading, usually to the 
effect that the true estimator variance is over-estimated. There is a wealth of suggestions for 
how to cope with this type of situation by trend modelling approaches, and an extensive re
view is given in Wolter (1985), Chapter 7. It should be mentioned, though, that the modelling 
approaches in the literature usually differ somewhat from the one in this paper, to the effect 
that most writers work in super-population frame-works, and not in our frame-work with 
families of frame order distributions {\(' ); xeQ.}. 

Variance estimation by frame segmentation 

The basic idea in the frame segmentation approach is as follows. For a specific study variable 
x it may be difficult to specify a trend structure over the entire frame, but this task may be 
easier to accomplish "part-wise", if the sampling frame is partitioned into appropriately chosen 
segments. The segmentation idea lies close to stratification thinking, and from a more formal 
point of view segmentation can be regarded as a special case of stratification. From a practical 
point of view, though, there are (at least) the following differences. A stratification, should 
be carried out before the sample is selected, while segmentation typically is carried out at the 
estimation stage. Moreover, one may perfectly well use different segmentations for different 
study variables (while a stratification holds uniformly for the whole survey, with all its study 
variables). Finally, as is meant to be indicated by the very term "segmentation", a segment 
should consist of consecutive units (in the frame order), while a stratum could be any subset 
of the frame. Segmentation and post-stratification are pretty close notions, though. Below we 
introduce some formal notions, terminology and notation. 

A segmentation 7G=('Kl,'}{2,...,
t}{G) of the sampling frame (1,2,...,N) is specified by integers 

Ni,N2,...,NG such that Ng>l, g=l,2,...,G and NJ+NJ+.- .+N^N, and the frame segments are 
^=(1,2,...,^), ^=(N1+l,N1+2 N^lNy,..., tHG=(N1+...+NG.1+l,...,N). 
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The corresponding segmentations of the size measure s, (s^Sj,....^), of the sample size 
n, (n^»....^) and of the x-sample X, (X^Xj,...,^), are obtained by the "natural" alloca
tions of the quantities in question to the respective frame segments. In particular, Xg is the 
collection of x-values which are observed for sampled units from 3Ç 

Segmented variance estimator are defined below, and their rationale is discussed afterwards. 

Let X be an x-sample selected by SYS(n;s) from the frame (1,2,...,N), which is given the 
segmentation yC=(Jil,'H2,.;%3)- Then a segmented variance estimator for the x sample sum, 
generally referred to by the notation VESS[X;!K], has the following structure, where VESSg 

denotes a variance estimator for sample sums selected by SYSOî Sg) from ÎĤ ; 

(3.25) 

To give justification of the segmented variance estimator, we assume in the first round that 
the frame segmentation in fact is made before the sample selection and that independent 
samples are selected from the respective segments, a SYS(ng;sg) from !H .̂ With TCXjîĤ ) 
denoting the x sample sum in the sample from ^ we have; T(X)=T(X;tK,)+ T(X;JQ+ ... 
+T(X;KG), and the independence assumption yields; VX[T(X)]=VI[T(X;Ï{1)]+VI[T(X;^]+... 
+Vx[T(X;îMi3)]. By estimating term-wise in this last relation (3.25) is obtained. 

However, in a practical SYS-sampling situation the assumptions that the above reasoning was 
based on are virtually never exactly fulfilled. In particular, the assumption about independence 
between the samples from different segments is not fulfilled (at least not in the strict 
probabilistic meaning of independence), due to the common starting point for all segment 
samples. Moreover, if the segmentation is carried out when the SYS(n;s) sample is already 
selected, as is the usual case in practice, the sample sizes (n,,^,...^) should be viewed as 
random quantities. However, they are "ancillary" relative to most estimation objectives. Hence, 
if one follows the general recommendation for statistical inference: "Make inference condi
tional on all available ancillary statistics", and makes the inference conditional on (n1,n2,...»nG), 
then one is back in the situation with fixed sample sizes, which was considered in the above 
"justification". (Rao (1985) gives a fuller discussion of conditional inference in survey 
sampling.) We let this conclude the "justification" of the segmented variance estimator. 
Admittedly, a good deal of "hand-waving" was used and, and as always for SYS-sampling, 
in the end it becomes a matter of judgement whether a procedure should be regarded as 
sufficiently accurate or not. 

The formula (3.25) only provides a general structure, and in the specific situation one also has 
to decide on which VESSg-estimators to use in the right hand side of (3.25). In this decision 
one is "back to scratch" in the sense that the task now is to specify frame order distributions 
for the different segments. This could be done by a trend model or in terms of total ignorance 
of frame order, and there is no general requirement to use the same VESS-estimator in all 
segments. A special case, which is highly relevant for practice, is that the surveyor judges that 
total ignorance of frame order is a good enough model for each separate segment, although 
he/she means that a total ignorance description would be inappropriate for the whole sampling 
frame. In such situations one can say that the problem of trend in the study variable is 
resolved by a segmentation which leads to removal of the trend. (This judgement is typically 
made if one knows, or believes, that the x-values are fairly homogeneous within segments, but 
have different mean levels between segments.) 
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If VESS[· ;a] is applied in each segment, one gets the following estimator, 

(3.26) 

A further specialization of the estimator in (3.26) is obtained as follows. For simplicity, we 
assume that the sample size n is an even number. (The estimator is readily modified if this 
is not the case.) Chose a segmentation 9i* such that exactly two sampled units come from each 
segment (which does not lead to a unique determination of H*, though). Then (3.26) takes the 
following form; 

(3.27) 

r-l 

In the S SYS case, a natural choice of H* is to let each segments consist of N/2 units (for 
simplicity assume that also N is even). 
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4. On successive pps-sampling. 

In this section we shall review and study some aspects of the sampling procedure which 
usually goes under the name of successive pps-sampling, in particular we shall study variance 
estimation. 

4.1 Some general notions and results 

As before we presume a sampling frame which lists the units in the population U=(1,2,...,N). 
Here the frame order will be irrelevant, though, in contrast to the systematic sampling case. 
The sampling frame is assumed to carry a distinguished variable P=(P,,P2,...,PN), referred to 
as the draw probability proportionates, which are assumed to satisfy; 

(4.1) 

A size n successive pps unit-sample from U, selected with draw probability proportionates 
p, referred to by the notation SUC(n;p), is drawn as follows. 

(i) n units are drawn successively and without replacement from U, and they constitute the 
unit-sample. 

(ii) Given the "remaining" population", each new draw is made independently of previous 
ones, and so that the probability of selecting a unit which is still in the population is 
proportional to its p-value. 

Remark 4.1: a) The assumption (ii) is expressed more formally as follows. Let ]l(v)J2(\)„ 
..,JN(v) denote the "sample exclusion indicators" after v draws (hopefully a self-explaining 
term). Then; 

(4.2) 

b) A probabilistically equivalent way to select a SUC(n;p) sample runs as follows, (i) Units 
are drawn from U successively and with replacement until n different units have been selected, 
and these different units constitute the unit-sample, (ii) At each draw, unit i is selected with 
probability p;, i=l,2,...,N, and all draws are made independently of each other. • 

Remark 4.2: When the draw probability proportionates are equal, PI=P2=—=PN=1/N, success
ive pps-sampling is nothing but simple random sampling, i.e. SUC(n;l/N) = SRS(n). • 

Next we review some results on successive sampling, which will play an instrumental role in 
the sequel. The results are taken from Rosén (1972a,b) where they are formulated as limit 
theorems, while we here prefer to express them as approximation results. For the validity of 
the limit theorems, and accordingly for good approximation in the corresponding approxima
tion formulas, certain conditions must be fulfilled. In (4.3)-(4.5) below we formulate the 
relevant conditions in "pedestrian's versions" which admittedly are somewhat vague, and a 
reader who wants more details is referred to Rosén (1972). Another possible source, and 
probably more comprehensible, is Chapter 9 in Hâjek (1981). 
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The sample size n is "fairly large" and the size N of Ac population is "larger". 
(The sampling fraction n/N may range over the entire interval (0,1), though.) (4.3) 

None of the draw probability proportionates pj, i=l,2,...,N, is an "outlier" 
compared with the majority of p-values. (4.4) 

For the variable x, none of the deviations from its mean, i.e none of the values 
xrp(x), i=l,2,...,N, is an "outlier" compared with the majority of deviations. (4.5) 

To formulate the approximation results we need some notation. The variables S=(61,S2,...,6N) 
and ((>=(()) „<J>2,...,<1>N) are determined by n and p as stated in (4.6) and Definition 4.1 below. 
When we want to stress the dependence on n and p we use notation as 6i(n;p) and <j>j(n;p). 

(4.6) 

The variable <j>, which will be used to approximate inclusion probabilities for SUC(n;p), has 
a somewhat more complicated definition. 

DEFINITION 4.1: First determine the number u=u(n;p), 0<u<l, by the relation; 

(4.7) 

Then set, 
(4.8) 

That the above definition always leads to a unique variable <J>=(<|>i,<|>2»- -.^N) c a n be realized 
by the following arguments. View the left hand side in (4.7) as a function f(u) of u, 0<u<l. 
Then, as is readily seen, f(u) is continuous, it increases strictly with u from f(0)=0 to f(l)=N. 
Hence (4.7) is satisfied for a unique u-value. • 

LEMMA 4.1: Approximate inclusion probabilities. The inclusion probabilities 7C=(K1,7C2,. 
..,TCN) for SUC(n;p) are under (4.3) and (4.4) well approximated as follows; 

(4.9) 

Justification of the claim in Lemma 4.1 can be found in Rosén (1972) or in Hâjek (1981), 
Chapter 9. Next we consider inferential variances of linear statistics. As regards inference, 
throughout this section we work under the inference model (£2,{x(n); xeQ},{P<>x; xefl}), 
where P is the canonical unit-sample distribution given by SUC(n;p). Also her we confine the 
discussion to sample sums. 

LEMMA 4.2: Consider SUC(n;p) and let n be the inclusion probabilities and 5 and <J> be 
according to (4.6) and Definition 4.1. T(X) denotes, as usual, the sample sum for the vari
able x. Assume that (4.3)-(4.5) are satisfied, (i) Then the following variance formula holds 
with good approximation; 

(4.10) 

where 
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(4.11) 

(ii) Also the following variance formula holds with good approximation, where u(x;<j>;6) 
in (4.12) is specified in (4.13); 

(4.12) 

(4.13) 

Justification of (4.10) can be found in Rosén (1972) or in Hâjek (1981), Chapter 9. The differ
ence between (4.10) and (4.12) is that the exact inclusion probabilities in (4.10) are changed 
in (4.12) to the approximate versions given by (4.9). Hence, when (4.10) and (4.9) hold with 
good approximation so does (4.12) (but probably with a bit less good approximation.) 

4.2 Variance estimation 

First we introduce a notation, and with regard to its future use we make it a bit elaborate. 

DEFINITION 4.2: Q*-statistics. Consider a size n unit-sample from the population U, on 
which there are specified variables x, a and b. The values of x, a and b for sampled units 
are denoted by X=(X„X2,...,Xn), A=(A,,A2,...,An) and B=(B,,B2,...,BB) respectively. First 
define the statistics D as follows; 

(4.14) 

The statistic Q*, fuller denoted by Q*(X;a,b) or Q*(X;A,B) according to convenience, is 
then defined as; 

(4.15) 

We are now prepared to formulate a preliminary variance estimation result for SUC-sampling. 

LEMMA 43: Let X=(X1,X2,...,Xn) be the sampled x-values for a SUC(n;p) unit-sample. 
Assume mat (4.3)-(4.5) are satisfied. Then approximately unbiased estimation of VJT(x)] 
is given by Q*(X;a;b) with a=<|>(n;p) and b=5(n;p) as specified in Definition 4.1 and (4.6). 

Justification: Let Ij,I2,...,IN denote the inclusion indicators for the sample. In the first round 
regard the quantity u(x;<J>;5) in (4.13) as known, although this will not be the case in a practi
cal situation since p(x;<|);8) is a characteristic which depends on the x-values over the entire 
population (cf. (4.13)). Consider the following sample statistic; 

(4.16) 

By taking expectation in (4.16) and recalling the relation E[JJ=7Cj (see (2.8)) we get; 
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(4.17) 

From (4.17), (4.9) and (4.12) it is seen that EJR(X)] » the right hand side in (4.12). Hence, 
in view of (ii) in Lemma 4.2, R(X) yields approximately unbiased estimation of VX[T(X)]. 
However, as already stated, u(x;<|>;5) is not known in the practical situation and, hence, R(X) 
cannot be computed. We take the usual way around this obstacle, i.e. to exchange the 
unknown population characteristic u(x;<|>;ô) by an estimated version of it. Introduce the follow
ing statistics; 

(4.18) 

Then, again using that E(I)=7Cj, we get; 

(4.19) 

From (4.19), (4.9) and (4.13) it is seen that (with good approximation) E,[F(X)] = the nomi
nator in p(x;<]>;8) and E(W) ~ the denominator in p(x;<|>;8). From this we conclude that F/W 
yields approximately unbiased estimation of p(x;<|>;ô). It is readily checked, and we leave the 
details to the reader, that exchange of p(x;<)>;5) for its estimator F/W in the statistic R leads 
to the estimator Q*(X;<|>(n;p);5(n;p)), which thereby is justified as an approximately unbiased 
estimator of V,[T(X)]. • 

As stated in Remark 4.2, SUC(n;l/N) equals SRS(n). Hence, Lemma 4.3 provides a possible 
variance estimator also for SRS(n). It is readily checked, and we leave the details to the 
reader, that for SUC(n;l/N)=SRS(n) we have <]>(n;p)=8(n;p)=n/N and, hence, that the variance 
estimator becomes; 

(4.20) 

From (4.20) and (2.20) it is seen that the above complicated way of deriving a variance 
estimation procedure for SRS in fact leads to an estimator which lies close to the traditional 
one in (2.20). There is a slight discrepancy, though, amounting to the factor n/(n-l). With this 
observation as background we introduce an adjusted (admittedly a bit ad hoc) version of the 
estimator. First we introduce a modification of the statistic Q*. The statistic Q is defined as 
follows, where Q*(X;a;b) is according to Definition 4.2; 

(4.21) 

The following estimator VESS[X;SUC] will be regarded as the "basic" one for SUC-sampling. 

THEOREM 4.1: Consider SUC(n;p) and let a=<j>(n;p) and b=8(n;p) be as specified in 
Definition 4.1 respectively (4.6). Let X=(Xl,X2,...JCJ be the sampled values for the variable 
x. Assume that (4.3)-(4.5) are satisfied. Then approximately unbiased estimation of 
V,[T(X)] is provided by 

(4.22) 

This concludes our study of SUC-sampling. 

28 



5. Basic results on variance estimation for systematic pps-sampling by 
approximation with successive pps-sampling 

In this section we carry out the basic part of the program which was outlined in Section 1, 
namely to employ (1.2) as a basis for derivation of variance estimators in conjunction with 
systematic pps-sampling. The approximation idea in (1.2) is restated below in a somewhat 
different wording. 

Inference from a SYS(n;s) sample under total ignorance of frame order is approx
imately equivalent with inference from a SUC(n;p) sample with an appropriately 
chosen p. (5.1) 

Also in this section we confine the discussion to the standardized linear statistic, i.e. the 
sample sum. In (5.2) below we state a more special, and more technical version of (5.1). 

An estimator of VI[T(X)] under S YS(n;s) with total ignorance of frame order is obtained 
by a (good) estimator for VJT(X)] under a SUC(n;p) inference model, with an appropri
ately chosen p. (5.2) 

When implementing (5.2), we shall use the SUC variance estimator in Theorem 4.1, i.e an 
estimator of the type Q(X;a;b) as defined by Definition 4.2 and (4.21). The problem is to 
chose a and b, or more generally formulated, to answer the following question which is raised 
by (5.1) and (5.2). For which p's can SUC(n;p) be expected to give "appropriate" approxima
tion of SYS(n;s) with total ignorance of frame order? The following idea for an answer is 
near at hand. 

Approximate SYS(n;s) with total ignorance of frame order by the SUC(n;p) which has 
draw probability proportionates p equal to the standardized version z(s) of the size 
measure s (see (3.2)), i.e. approximate by SUC(n;z(s)). (5.3) 

Under the approximation mode (5.3), a and b in Q(X;a;b) shall be chosen as; 

(5.4) 

where <|> and 8 are according to (4.6) and Definition 4.1. This leads to the following variance 
estimator (and we continue on the labelling a,b,c which was used in Section 3.4.1); 

(5.5) 

As will be seen in Section 7, VESS[X;d] works quite satisfactorily in many cases, but in 
some types of situations it does not perform well. An explanation for this sometimes bad 
performance is given by the fact that SUC(n;z(s)) in fact may approximate SYS(n;s) quite 
badly in the sense that the two procedures may have considerably different inclusion proba
bilities. By virtue of (3.3) and Lemma 4.1 the following relation holds, and "non-inequality" 
occurs only exceptionally in it; 

(5.6) 

The relative difference between the inclusion probabilities in (5.6) is often small but it can be 
considerable, as is illustrated in the following example. 

Example 5.1: Let U=(1,2,...,N) be a population, z a standardized size measure and n an 
integer. Assume that for some unit in the population, say unit 1, we have z, = 1/n. Then, for 
SYS(n;z), TC, = n- zl =1, which means that unit 1 will be included in a SYS(n;z) sample with 
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probability 1. However, for SUC(n;z) the inclusion probability for unit 1 is less than 1, since 
the unit may be "missed" in each of the n successive draws (without replacement). If N is 
large and the sampling fraction is small we have 7C1»l-l/e= 0.37 (Lemma 4.1 provides more 
details.) Hence, inclusion probabilities for S YS(n;s) and SUC(n;z(s)) may differ considerably. 

The above situation is perhaps a bit extreme to the effect that it involves inclusion with 
probability 1. However, it is readily realized that the phenomenon, that one (or more) units 
have much higher inclusion probabilities for SYS(n;z) (but less than 1) than for SUC(n;z), 
occurs as scon as some Zj lies close to 1/n, even if it lies a bit below. (Since the sum of the 
inclusion probabilities equals the sample size n in both cases, other inclusion probabilities 
must be ordered in the opposite way.) • 

With the above discussion as background, the following alternative approximation mode 
sounds more appealing than the one in (5.3). 

Approximate SYS(n;s) with total ignorance of frame order by the SUC(n;p) 
which has the same inclusion probabilities as SYS(n;s). (5.7) 

Then the problem is to find a p which makes (5.7) satisfied. Strict fulfilment of (5.7), i.e. to 
find a p such that TtjfSUCfopXJ^jfSYSfas)], i=l,2,...,N, is impossible for general n and s, 
at least from a practical point of view. The reason for this is that no numerically manageable 
formula for SUC inclusion probabilities is available. Therefore, we shall consider a "next 
best" solution, by seeking a p which yields equality between the inclusion probabilities for a 
given SYS(n;s) and the approximate SUC inclusion probabilities given by Lemma 4.1. By 
(3.3) this means that we want to solve for p, p=p(n;s), in the following equation (system); 
<}>(n;p)= n- z(s), which by virtue of (4.8) has the following explicit form; 

(5.8) 

By taking logarithms (with an arbitrary base) in (5.8) we get; 

(5.9) 

Now recall (4.1), which states that probability proportionates should sum to 1. By applying 
this condition to (5.9) we arrive at the following pj's, which have the pleasant feature that u 
has disappeared; 

(5.10) 

Hence, the strategy (5.7) leads to the variance estimator Q(X;a;b) which is obtained by setting 
a=n- z(s) and b=n· p(n;s), with p according to (5.10), and the resulting estimator is denoted 

(5.11) 

where Q is given by (4.21) and Definition 4.2. This is the estimator which we want to recom
mend for practical use, and therefore its computation is written out in full in Algorithm 5.1 
below. Justification for the algorithm is given after its formulation. The main reasons for our 
preference for this estimator, which will be discussed more fully in Section 7, are in brief the 
following. We strongly believe that VESS[X;e] is good as regards estimation accuracy and in 
addition to that it is computationally simple. 
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ALGORITHM 5.1. Computation of VESS[- ;e]: Let X=(X1^C2,.. .,XN) be the observed 
x-values for a SYS(n;s) sample. Then VESS[X;e] in (5.11) is computed by the following 
steps (i)-(iii). 

(i) Compute the standardized size measure z(s) by (5.12). Henceforth let Z^Zj,...,^ denote 
the z-values for the sampled units. 

(5.12) 

(ii) Compute 

(5.13) 

(5.14) 

(iii) Finally set; 

(5.15) 

Justification of Algorithm 5.1: The task is to give an explicit computation formula for the 
right hand side in (5.11), using Definition 4.2 and (4.21). The following observation admits 
simplifications. The Q*-statistic in Definition 4.2 is "homogeneous in b" in the sense that 
Q*(X;a;k- b) = Q*(X;a;b) for any k=0. This follows readily from (4.14) and the fact that the 
b-values come in only in D=C,/C2. From (4.21) follows that Q has the same homogeneity 
property. In our case b is given as n· p(n;s), where p(n;s) is defined in (5.10). By the homo
geneity we can change b to b—n- log(l-z(s)j), i=l,2,...,N, which leads to the algorithm. • 

Remark 5.1: As the variance estimator VESS[X;d] in (5.5) also is based on the Q-statistic in 
(4.21) it is computed by an algorithm which is quite analogous to Algorithm 5.1. The compu
tation of VESS[X;d] requires some non-trivial preliminary computation efforts, though. To 
start with one has to compute the <)>(n;z)-values by Definition 4.1, the crucial part being to 
solve the equation (system) (4.7) for u. In our experience this is quite feasible by using 
iterative methods, but it does require some computational efforts. We leave the details to the 
reader. • 

Remark 5.2: It is readily checked that VESS[X;d] and VESS[X;e] agree for SSYS (which 
under total ignorance of frame order agrees with SRS), and then both variance estimators lead 
to the "correct" estimator n<l-n/N)-S2(X). Hence, to experience difference between 
VESS[X;d] and VESS[X;e] one has to consider situations with "genuine" systematic pps-
sampling (i.e. "non-SSYS" cases). In Section 7 we consider such cases. • 

Thereby we have advised on a variance estimator for SYS(n;s) under total ignorance of frame 
order. As regards situations where the study variable has frame order trend, we confine in this 
paper to "trend removal" by segmentation (see Section 3.4.2). In line with the previous gen
eral recommendation of VESS[X;e] under total ignorance of frame order, the following 
segmented estimator is recommended in cases where one knows of a segmentation which 
leads to (or is believed to lead to) segment-wise total ignorance of frame order; 

(5.16) 
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6. On practical application of the SYS variance estimation method 

In this section we shall consider various issues of relevance for practical applications of the 
SYS(n;s) variance estimation approach, which was introduced in the previous section. In 
Sections 4 and 5 we were "unpractical" to the effect that we considered the standardized linear 
statistic, the sample sum, while the most interesting linear statistic in practice is the HT-
estimator. Variance estimation for HT-estimators is treated in Section 6.1. The ever-present 
problem in practice, non-response, is commented upon in Section 6.2. Variance estimation 
under measurement errors is discussed in Section 6.3. The results there have independent 
interest, and they also prepare for the considerations in Section 6.4, which concern stage-wise 
sampling with systematic pps-sampling in the first stage. 

6.1 Variance estimation for Horvitz-Thompson estimators 

We start with the HT-estimator of a population total T(X). Its appearance in the SYS(n;s) case 
is stated in (3.12). As is pointed at by (2.16) and (2.13), the HT-estimator for a population 
total can be viewed as the sample sum for the transformed variable y=x/7C, which in the 
SYS(n;s) case is y=x/[n- z(s)]. Hence, Algorithm 5.1 can be applied to T^O^^x/tn- z(s)])> 
and no principally new problems turn up. However, because of its practical interest we make 
the effort to write down the special case of Algorithm 5.1 which corresponds to the HT-
estimator for a population total. The checking is left to the reader. 

ALGORITHM 6.1: Variance estimation for the HT-estimator of a population total: 
Let X=(X1,X2,...,Xn) be the observed x-values for a SYS(n;s)-sample. Let z(s) and (Zi.Zj,. 
..,ZJ be as stated in Algorithm 5.1. Then the HT-estimator for the population total x(x) is; 

(6.1) 

Under total ignorance of frame order for the variable x/s, the inferential variance of the 
HT-estimator in (6.1) is estimated by the steps (ii) and (iii) below. 

(ii) Compute 

(6.2) 

(6.3) 

(iii) Finally set 

(6.4) 

Variance estimation for the more general HT-estimator in (2.14), of a ratio of totals, can be 
handled very much along the same lines. Take as point of departure is the approximate 
variance formula (2.19). As is seen, the middle and right hand parts of (2.19) concern vari
ances of linear statistics and Algorithm 5.1 comes into mind. A well-known obstacle turns up, 
though, namely that the characteristics u(x) and u(y) in (2.19) are not known. There is also 
a well-known (and "usual") way around this obstacle, namely the following. Replace u(x) and 
u(y) by their estimates £HT(X) and Pmty), and then proceed as if the estimated values of u(x) 
and u(y) were the true ones. With this modification, Algorithm 5.1 can be set to work. We 
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leave the details to the reader. We adopt the following notation convention as regards 
estimators of the variance for HT-estimators. A variance estimator for the HT-estimator X(X)HT 
which is based on VESS[- ;y] is referred to by the notation ^ ( x ^ y ] . 

6.2 Variance estimation when non-response occurs 

Here we make a detour from the general assumption in Section 2 that all sampled units 
respond in the observation phase. It is a well-known (and unpleasant) fact that some non-
response occurs in virtually every practical sample survey. Then one cannot exhibit unbiased 
estimators, neither point nor variance estimators, unless assumptions are made about the 
"mechanism" for generation of the non-response. It is also a well-known fact that, whatever 
assumptions are made, they are pretty difficult to verify. The following assumption is a 
standard one in this context (and it is often as good as any other). 

MODEL 6.1 for non-response: Chance determines whether a unit, which is taken out for 
observation, responds or not. As regards responding, units act independently of each other, 
and all units in the population have the same response propensity. 

The following result belongs to the "folk-lore". 

Estimation under Model 6.1: Consider inference on x-characteristics based on SYS(n;s) 
with total ignorance of frame order for x. Non-responses may occur, and Model 6.1 is 
assumed to hold, at least for the variable x. Let n' denote the number of responding units. 
Then the inference from the x-values for the responding units should be carried out as for 
SYS(n';s). 

As regards variance estimation, the practical consequence of the above statement is that 
VESS[- ;e] can be applied also when non-response occurs, provided Model 6.1 can be 
assumed to be realistic. The modification needed is that the sample size n should be substi
tuted by the number n' of responding units. 

6.3 Variance estimation when the observations are afflicted by measurement errors 

Here we make another detour from the general assumption in Section 2, and allow for the 
possibility that measurement errors occur. Then we have to modify the previous inference 
model, which is done below. Note, though, that the following model has quite special features, 
and a variety of other models are possible in the measurement error context. 

MODEL 6.2 for sampling and measurements: The inference interest concerns x-charac
teristics where, as usual, x=(x1,x2,...,xN) is a variable on the population U=(1,2,...,N). The 
apriori possible x-values are, as before, denoted by Q. An ordered, size n unit-sample is 
selected without replacement from U. Observations are made on the sampled units and the 
measurement for unit i, provided it is sampled, is generated as ypXj+Ej, i=l,2,...,N, where 
the measurement errors e,,^,...,^ are viewed as random variables. The observed values 
in their sample order are denoted by Y=(Y1,Y2,...,Yn). To set up a model for the distribution 
of Y we make the following assumptions. 

The sampling and measurement processes are independent of each other, i.e. the inclusion 
indicators (Ii,I2,...,IN) and the measurement errors (e^e^,...^) are independent random 
vectors. The distribution of (Ij,I2,...,IN) is, as before, modeled by a family {Px; xeQ} of 
unit-sample distributions. The measurement errors (e1,e2,...,eN) are assumed to be mutually 
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independent, and for each one of them there is specified a distribution family in which x 
enters as parameter. The following relation (6.5) is assumed to be satisfied for a set of 
parameters (o,2,a2

2,...,aN
2), referred to as the measurement variances. A consequence of 

(6.5) is that the distribution of £j in fact is assumed not to depend on x as regards it mean 
and variance; 

(6.5) 

It should be clear that the above assumptions in fact specify the joint distribution of 
(I^Ij»....^^!^.—.^). In particular, xe Q is the relevant parameter for the family of possible 
joint distributions. 

Remark 6.1: Note that Model 6.2 is invariant under transformation of the variable x to the 
following effect. If the model holds for x, and a is a variable which can be observed without 
measurement errors, then the model holds also for x/a. • 

In Model 6.2 we do not make any specific assumptions about the nature of the unit-sample 
distribution Px, more than that it should be an ordered, size n sample drawn without replace
ment. Before entering our special concern, SYS-sampling, we shall, for future use, consider 
a result which holds without additional assumptions to Model 6.2. In the following we let 
X=(X1,X2,...,Xn) denote the x-values for the sampled units (which are not observed, though). 
Moreover, T(Y) and T(X) as usual denote the following sums; 

(6.6) 

The contents of the following lemma is certainly well-known but we prove it, partly for the 
sake of completeness and partly as a preparation for future considerations. 

LEMMA 6.1: Under Model 6.2 the following relation holds; 

(6.7) 

Proof: Recall the relation y—Xj+Ej, i=l,2,...,N. Let E,1 denote conditional expectation given the 
outcome of the unit-sample, i.e. given I=(I,,I2,...,IN). For notational simplicity we will mosdy 
suppress the subscript x, though. By taking iterated expectation EX=EXEI in (6.9) and its 
squared version and employing well-known rules for conditional expectation we get; 

(6.8) 

(6.9) 

By the independence of (l!,I2,...,IN) and (e„£2,...,eN) and (6.5) the following relations hold; 
EI(ei)=E(ei)=0 and EI(ei

2)=E(ei
2)=o2

i, i=l,2,...,N, and under the assumption about mutual 
independence between the e's we have; Er(£j- ej)=E(ei- ej)=0 for i=j. By employing these rela
tions, (6.8) and (6.9) can be simplified. Next, combine the simplified formulas with the 
general formula V(T)=E(T2) - [E(T)]2, and (6.7) results. • 
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We now specialize to SYS(n;s). Moreover, we return to considering only sample sums, again 
with "simplicity of formulas" as reason. We leave to the reader to carry out the necessary 
modifications to obtain corresponding results for general linear statistics. 

LEMMA 6.2: Consider inference for S YS(n;s) under total ignorance of the frame order for 
x, and assume that Model 6.2 is in force. The Z's are as in Algorithm 5.1. Moreover, 
assume that there are statistics (HI,H2,...,HJ) which yield (approximately) unbiased estima
tion of the measurement variances, i.e. that E(H|) = a?, i=l,2,...,N, and that these statistics 
are available for sampled units. Then VESS[Y;f] in (6.10) below yields approximately 
unbiased estimation of VX[T(Y)]; 

(6.10) 

Remark 6.2: The formula (6.10) exhibits an unfortunate notational awkwardness, which may 
cause confusion. A VESS[. ] is always a statistic, which can be applied to a set of observed 
values. If certain conditions are met, the statistic VESS[X] yields "decent" estimation of 
VX[T(X)]. However, under other conditions VESS[X] may in fact be a bad estimator for 
VX[T(X)]. What is claimed in Lemma 6.2 is, that under the conditions stated in the lemma, 
VESS[Y;fJ yields decent estimation of VX[T(Y)], while VESS[Y;e] does not in general. • 

Remark 6.3: The claim in Lemma 6.2 of course still holds if VESS[X;e] is substituted by a 
statistic which is approximately equal to it. • 

Justification of Lemma 6.2: The following is a heuristic justification, rather than a strict 
proof. According to Algorithm 5.1 we have; 

(6.11) 

where we use the notation D(Y) to stress that D is a statistic which depends on the observa
tions Y=(Y!,Y2,...,Yn). Make the following operations in (6.11). (i) Substitute y, by Xj+Ej, in 
accordance with Model 6.2. (ii) Substitute D(Y) by D(X), and regard that as an "acceptable" 
approximation, with justification provided by the formulas (5.13) and (5.14) and the fact that 
the e's have zero means, (iii) Expand the square, (iv) Approximate n/(n-l) by 1. The listed 
operations (i)-(iv) together with (5.15) lead to the following approximate relation; 

(6.12) 

Now take expectation in (6.12), for the summations as term-wise iterated expectation E^E1 

(cf the proof of Lemma 6.1), and allow for the approximation to regard D(X) as a constant. 
By using the previously listed formulas E^Ej)^ and E^Ej2)^2, we get; 

(6.13) 

Under the conditions of Lemma 6.2, VESS[X;e] yields approximately unbiased estimation of 
V,[T(X)]. By inserting this into (6.13) and by comparing with (6.7), we obtain; 

(6.14) 

Furthermore, by (3.3) and the assumptions on the H's we have; 
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(6.15) 

Combination of (6.14) and (6.15) now yields the claim in Lemma 6.2. 

Remark 6.4: Under additional assumptions, the summation term in (6.10) can be neglected, 
and hence VESS[Y;e] can be used as an estimator for V,[T(Y)]. Note that the estimator 
VESS[Y;e] has the pleasant feature that it does not require any estimates of the measurement 
variances. From (6.15) it is seen that the summation term in (6.10) can be omitted if the 
quantity oV TC1

2+...-KT2
N. TCN

2 is small compared with "surrounding" terms. 

One situation where this holds is if all TC/S are small compared with 1, because then a2,. 7t,2+ 
...+oV 7CN

2 is small compared with oV n^^-HiV %, which is part of the right hand side 
in (6.16), and hence part of E,(VESS[Y;e]). (To a large extent this finding is only a compli
cated way of saying that when the sampling fraction is small, one can estimate V(Yi+Y2+.. 
.+YJ as if Y„Y2,...,Yn were independent observations.) 

Another situation where the summation term in (6.10) can be omitted, which also covers cases 
with non-negligible sampling fractions, is when o"V 7i1

2+...+0"2
N. TCN

2 is small compared with 
V(X,+X2+...+Xn), as is seen from (6.13). This type of situation occurs in particular (and not 
too surprisingly) if all a2 are small, i.e. if all measurement errors are small. • 

6.4 On variance estimation at stage-wise sampling with SYS(n;s) in the first stage 

Here we shall apply the results of the previous sub-section to situations with stage-wise 
sampling with S YS(n;s) in the first stage. More specifically we shall consider a version of the 
well-known variance estimation approach which often is referred to as the method of ultimate 
clusters. We start with some terminology and notation. 

The population is assumed to be hierarchically clustered; The study units are (according to 
some rule) grouped into mutually exclusive clusters, which in turn are grouped into mutually 
exclusive clusters on a higher level, which in turn ..., etc. The process eventually comes to an 
end, and then one has reached the "ultimate clusters". A stage-wise sampling procedure relies 
on this type of hierarchical structure, but goes in the "opposite direction". We adhere to the 
usual way of naming the clusters, namely by their role in the sampling process. The first stage 
sample of PSUs (= primary sampling units) is a sample of ultimate clusters. From sampled 
PSUs subsamples of SSUs (= secondary sampling units) are selected, etc. Finally one comes 
to samples of USUs (= ultimate sampling units), which are the basic units for observation. 
Below we specify the vital assumptions about the sampling process. 

(i) The sampling process is hierarchical in the sense that only clusters which are sampled 
on one level are subsampled on the next level. 

(ii) Given the clusters which have been sampled on one level, the subsamples on the 
next level are drawn independently of each other and independently of what happened 
in previous sampling stages. 

Let i index the PSUs/ultimate clusters, i=l,2,...,N. Moreover, let 
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Yj = a statistic which can be computed from observations made on sampled units (on 
any level) which are reached via the i:th PSU, and only from such observations, 
i=l,2,..,N. (6.16) 

Assume that the sampling procedure starts with a sample of PSU's of size n. Let, as usual, 
T(Y)=Yi+Y2+...+YB be the sample sum of Y's. When stage-wise sampling is employed, an 
estimator of a population total typically has this sum structure, the Y's being "HT-inflated" 
versions of estimators of PSU totals. (The "HT-modification" is left to the reader.) The task 
is, as usual, to derive an estimator for VJT(Y)]. Consider the following partitioning; 

(6.17) 

It is readily checked that the above assumptions (i) and (ii) entail that Model 6.2 applies to 
(6.17). Hence, if one for sampled PSU's can exhibit unbiased estimators V[YJ of Oj2=V[YJ, 
Lemma 6.2 can be applied to yield the following estimator, which we call an ultimate clus
ters variance estimator; 

(6.18) 

In fact, usually one can exhibit estimators of V[YJ, which usually also are independent of 
each other, due to the fact that they are based on observations from stages which are sub
sequent to the first one. 

Remark 6.5: The "classical" ultimate clusters estimator is obtained by using either of the 
estimators VESS[Y;a] or VESS[Y;b]. • 
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7 Numerical illustrations, discussion and conclusions 

7.1 Introduction 

So far our investigations have been quite theoretical, but we have employed different types 
of approximation arguments at various stages of the reasoning. Therefore, on the basis of the 
hitherto considerations one cannot give clear answers to questions about the performance of 
VESS[- ;e] and VESS[- ;d] in practical applications. To get good insight on that matter one 
has to carry out well designed simulation experiments. A first step on the road of simulation 
evaluations is reported on in Section 7.2. However, these simulations certainly do not cover 
all types of situations that may turn up in practice, since there is such a great number of 
"parameters" which may be varied; the population size, the sampling fraction, the distribution 
of study variables, the distribution of the size measure variable and the structure of its covaria
tion with the study variables, to mention the most pertinent ones. 

In Section 7.2 we report on simulation findings which enable comparison of the performances 
of the new variance estimators VESS[- ;e] and VESS[- ;d] with "old" ones; VESS[- ;a], 
VESS[- ;b] and VESS[. ;c], and which also exhibit results for (estimated) true variances. The 
comparisons concern expected values of the estimators as well as the confidence level for 
confidence intervals based on them. The comparisons mainly relate to situations with total 
ignorance of frame order, but we also consider a situation with frame trend in the study 
variable. 

As was discussed in Section 2, the success of a confidence interval K±VQ depends not only 
on the unbiasedness of the employed variance estimator, approximate normality is also 
required. We comment on that matter in Section 7.3. 

In Section 7.4 finally, we formulate our conclusions concerning the practical applicability of 
the methods which are presented in this paper, the main one being that we mean there are 
good grounds to employ VESS[- ;e] in practical use, notably in cases with high sampling 
rates. 

7.2 Simulation results 

In this sub-section we report on simulation findings which relate to two different types of 
situations. The first one, in 7.2.1, concerns the behaviour of the VESS estimators, notably that 
of VESS[- ;e] and VESS[- ;d], in situations with total ignorance of frame order. The second 
one, in 7.2.3, is meant to illustrate the need for alternative estimators in situations with trend 
in the study variable. 

7.2.1 Variance estimation under total ignorance of frame order 

The main interest of this paper concerns situations with large sampling fractions. To achieve 
such situations under good "simulation economy" we chose a fairly small population. The 
"unordered" version of the population (cf Section 3.1) and the variables on it were chosen in 
the following way. The population size was set to N=100, and the size measure variable s 
was selected as follows; s(i)=l for 1 <(i)< 25, s(i)=2 for 26 <(i)< 50, s(i)=3 for 51 <(i)< 75 and 
S(i)=4 for 76 <(i) < 100. To generate the "main" study variables x and y we started by 
introducing two "auxiliary" variables x* and y* as follows; 
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Values for the variable x* were generated as outcomes of independent normal random 
variables with mean 10 and standard deviation 2, (7.1) 

Values for the variable y* were generated as outcomes of independent random variables 
with uniform distributions; for units with s=l on the interval [0,10], for s=2 on the 
interval [5,20], for s=3 on the interval [10,30] and for s=4 on the interval [20,45]. (7.2) 

The values of x and y were then set to; 

(7.3) 

Hence, in all there are four variables on the population; x, y, x* and y*. The reason for the 
"duplication" of variables is that HT-estimators relative to x and y correspond to sample sums 
relative to x* and y*, as is readily checked. We find it instructive to be able to alternate 
between the two views; "sample sum" respectively "HT-estimator". The distributions of the 
variables over the whole population are presented graphically in the Figures 7.1 - 7.4. 
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The design of the simulation experiment was as follows. For the sample sizes n=10, 20, 30, 
40, 50 and 60, yielding sampling rates 10%, 20%, ..., 60%, repeated independent SYS(n;s)-
samples were drawn from the population. Condition (3.1) sets the upper limit n<62. In all 
5000 independent samples were selected. For each sample, the values of s, x, y, x*, and y* 
were recorded for the sampled units, the latter as usual referred to by X, Y, X* and Y*. Since 
the simulation findings are meant to illustrate inference under total ignorance of frame order, 
the sampling frame was reordered by a totally random permutation before each new sample 
selection (cf. Remark 3.3). Statistics were computed from the sample values, and compiled 
as stated below. 

(i) The sample sums T(X*) and T(Y*) (see (2.15)) were computed for each sample. From 
(7.3) and what is said in Section 2.2 it is readily checked that these sample sums relate 
to the HT-estimators for the population means of x, y as stated in (7.4). Note that N=100 
and z=s/250. 

(7.4) 
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(ii) The true values of the variances V[T(X*)] and V[T(Y*)] were estimated by the empirical 
variances for the simulated sample sums T(X*) and T(Y*). The findings concerning 
"true" variances are reported in the bottom lines of Tables 7.1 and 7.3. The computation 
of the associated margins of error is described in Section 7.2.2. 

(iii) For each sample the variance estimators VESS[X*;. ] and VESS[Y*;' ] were computed 
for • = a,b,c,d,e, see (3.21), (3.23), (3.24), (5.5) and (5.11). The mean values of the 
variance estimators over the simulated samples were derived, and these findings are 
reported in Tables 7.1 and 7.3. The computation of the associated margins of errors is 
described in Section 7.2.2. 

(7.4) yields that if one multiplies a VESS[X*;- ] or VESS[X*;« ] by 6.25/n2 one obtains 
the corresponding estimate of the variance of the HT-estimator for the population mean. 

(iv) Confidence intervals for p(x) and u(y) were computed by the formula 

(7.5) 

for • = a,b,c,d,e and also for the "true" variance discussed in (i). (For notational system 
see the end of Section 6.1. Each confidence interval was checked with respect to cover
age or not of the (true) population mean, and empirical coverage rates are reported in 
Tables 7.2 and 7.4. 

Table 7.1: Results for the variable x*. The contents of the table are illustrated graphically in Figure 7.5. 

Table 12. Non-coverage percentages for confidence intervals for u(x). The margin of error for 5% 
non-coverage risk is 0.6%. The contents of the table are illustrated graphically in Figure 7.6. 
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Figure 7.5. Graphical representation of the VESS values in Table 7.1. 
"True" denotes the estimated value of V[T(X*)]. Note that the curves 
for VESS[X*;c] and VESS[X*;e] hardly can be distinguished. 

Figure 7.6. Graphical representation of the non-coverage percentages in 
Table 7.2. "True" corresponds to the estimated value of V[T(X*)]. 
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Table 13: Results for the variable y*. The contents of the table are illustrated graphically in Figure 7.7. 

Table 7.4. Non-coverage percentages for confidence intervals for u(y). The margin of error for 5% 
non-coverage risk is 0.6%. The contents of the table are illustrated graphically in Figure 7.8. 
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Figure 7.7. Graphical representation of the VESS values in Table 7.2. 
"True" denotes the estimated value of V[T(Y*)]. Note that the curves 
for VESS[Y*;c] and VESS[Y*;e] hardly can be distinguished. 

Figure 7.8. Graphical representation of the non-coverage percentages in 
Table 7.2. "True" corresponds to the estimated value of V[T(Y*)]. 
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7.2.2 On the computation of margins of error 

The term margin of error is used for twice the standard deviation of an estimated quantity. 
The margins of error for the estimated expected values of the VESS's were computed in the 
"straightforward" way; as twice the empirical standard deviations for the simulated VESS 
values divided by the square root of the number of iterations. Similarly, margins of error for 
the non-coverage percentages were computed by the usual "pq-formula". 

The margin of error for estimates of "true" variances, i.e. the margins of error in the bottom 
lines of Tables 7.1 and 7.2, were derived by applying well-known large sample theory (see 
e.g. Chapter 27 in Cramer (1946)) which leads to the following (large sample) estimator for 
the variance of an empirical variance S2 (see (2.21)) based on independent, equally distributed 
random variables X1,X2,...,Xk; 

(7.6) 

7.2.3 Comments on situations with trend in the study variable 

So far we have almost exclusively considered the variance estimation problem under the 
premise of total ignorance of frame order, but in Section 3.4.2 we discussed briefly variance 
estimation in cases with frame trend in the study variable. However, we shall not consider the 
"frame trend aspect" in any depth in this paper. The aim here is just to illustrate that trend in 
the study variable affects matters considerably. 

To that end we have made some simulations which are closely related to those in Section 
7.2.1. A population with size variable s and study variables x and y was constructed as fol
lows. The population in 7.2.1 was "duplicated" into two strata, which were concatenated as 
regards frame labelling, each stratum containing 100 units. The size values s were left intact 
in the duplication process. In one stratum also the values of x and y were left intact, while in 
the other stratum 10 was added to each "old" value. 

The following inference model was considered. The surveyor knows that the mean levels 
differ between the two strata, but has total ignorance of frame order within strata. (More 
technically formulated; Before a new sample was drawn, the frame was randomly re-ordered 
within each stratum.) 500 independent samples of sizes 20, 40, 60, 80, 100 and 120 were 
selected, i.e. the sampling fractions were as before 10%, 20%,...,60%. According to the dis
cussion in Section 3.4.2, segmented variance estimatimation is appropriate, with the two strata 
as segments. The variance estimators VESS[· ;a] to VESS[· ;e] were also computed for the 
entire samples. Results on the means of the latter are shown in Figure 7.9 for x and in Figure 
7.10 for y. As can be seen in these figures, frame trend in the study variable can lead to over-
estimation as well as to under-estimation of the true variance. 
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Figure 7.9. Graphical representation of the means of the VESS estimators 
applied to the entire x-samples. Means for the corresponding segmented 
variance estimators can be "copied" from Figure 7.5. 

Figure 7.10. Graphical representation of the means of the VESS estimators 
applied to the entire y-samples. Means for the corresponding segmented 
variance estimators can be "copied" from Figure 7.7. 
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7.3 Comments on asymptotic normality 

As was discussed in Section 2.2, a variance estimator Q (relative the point estimator K) is 
really interesting only if it can be used as a pivotal quantity in the sense that K ± 2· VQ 
yields a confidence interval with approximately 95% confidence level. One requirement for 
this is that the variance estimator in fact yields consistent estimation of the true estimator 
variance. Another requirement is that the distribution of the point estimator K in fact is well 
approximated by a normal distribution. In our situation, this leads to the question if sample 
sums selected by SYS(n;s) are approximately normally distributed or not. In Section 2.2 we 
alluded to the "meta-theorem" which says that every "reasonable" statistic, as e.g. a sample 
sum, is approximately normally distributed provided the sample size is fairly large and other 
circumstances are not too "wild". If one thinks this meta-theorem is justification enough, 
everything is of course ok. However, below we give some supplementary arguments of, 
hopefully, "harder" nature. 

(i) In Rosén (1972) approximate/asymptotic normality of the sample sum at SUC sampling 
is proved. This does of course not say anything directly about the behaviour of sample 
sums at SYS(n;s) sampling. However, provided that one believes that the approximation 
argument (1.2) in fact is valid with good approximation, and this is the basis for the 
present variance estimation method, then a consequence is also that the sample sum 
under total ignorance of frame order is approximately normally distributed. 

(ii) Here we adhere to what is said in Section 7.2.2 on estimation of V(S2). If the X-variables 
are normally distributed, thereby having 4:th central moment equal to 3· o4, the follow
ing simpler (than (7.6)) estimator also applies; 

(7.7) 

The reported margins of errors in Tables 7.1 and 7.3 are based on (7.6). However, we 
also computed the variance estimators in (7.7) for all the different sample sizes, and 
found that they gave very similar results. This provides some justification for the fact 
that SYS(n;s) sample sums in fact have approximately normal distributions under general 
conditions, at least under random frame order. 

(iii) Another (partial) check of the approximate normality is obtained by the actual confidence 
level of the confidence interval K ± 2- VV[K]. Under perfect normality this confidence 
level i 4.5%. As can be seen from the bottom lines in the Tables 7.2 and 7.4, this fits 
well with the simulation findings. 

7.4 Conclusions 

One should of course be careful, not to draw too far-reaching conclusions from the limited 
numerical findings which are available yet However, we mean that they indicate the follow
ing. 

- All the estimators VESS[- ;a], VESS[- ;b], VESS[- ;c], VESS[- ;d] and VESS[- ;e] 
work satisfactorily as long as sampling rates are "negligible". VESS[. ;b] is the first to 
run into trouble as the sampling fraction increases, and already for "moderate" sampling 
fractions it becomes unreliable. 
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- As long as the sampling rate is "moderate" VESS[- ;a], VESS[- ;c], VESS[- ;d] and 
VESS[' ;e] all work fairly satisfactorily, but VESS[- ;a] is no longer reliable when the 
sampling rate becomes "large". 

- For "large" sampling fractions VESS[- ;c], VESS[- ;d] and VESS[- ;e] all work fairly 
satisfactorily, but when the sampling fraction becomes "very large" VESS[- ;a] seems 
to be superior to the others. 

One gets the impression that the two best candidates are VESS[- ;c], i.e. the Hartley-Rao 
estimator and the new estimator VESS[- ;e], but it would be hasty to make any firm claim 
about their "ranking". We want to add the following circumstances in favour of VESS[. ;e]. 

(i) VESS[- ;e] has the advantage that it requires knowledge of inclusion probabilities only 
for sampled units, while VESS[- ;c] requires knowledge of the inclusion probabilities 
for all units in the population (cf. (3.24)). 

(ii) VESS[- ;e] has a simple rationale, namely the approximation argument (1.2), which 
makes it possible to judge in a particular situation whether it can be regarded as "reason
ably accurate" or not. 

In conclusion we want to recommend VESS[- ;e] for practical use, notably in situations with 
large sampling fractions. It can be employed "straightforwardly" in situations with total ignor
ance of frame order, as well as in segmented variance estimation procedures. 
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