
1

ThH 12.01.2006

The NPM-system

Functionality offered and preconditions for
using the system

1 Introduction
The NPM-system is a part of the PC-Axis system. The object of the NPM-system is to give the crea-
tors of statistical tables the opportunity to annotate every single data cell in the tables, using a set of
predefined markers for status and quality of the cell values. The predefined markers are called “NPM-
characters” in this document.
Use of the NPM-system depends upon certain additions having been made to the sql-database as well
as to some of the system files in the PC-Axis system. Most of these additions were introduced in ver-
sions 2.0 and 2.1 of the datamodel for the sql-database. An overview of the additions will be given in
this document.
From this it follows that the extended functionality in the NPM-system is accessible only if your sql-
database is version 2.1 or higher.

2

2 Additions to the sql-database
The additions to the sql-database comprise the inclusion of one or more new database tables, the addi-
tion of columns to existing database tables, and the addition of a smaller number of records to existing
database tables.

2.1 New database tables in the sql-database
The NPM-system is based upon the definition of a set of predefined “NPM-characters” for marking
data cells in the statistical tables. The definition of the NPM-characters is stored in a database table
called SpecialCharacter:

Table: SpecialCharacter
Column name Datatype NULL Pr. key For. key Description
CharacterType varchar(2) N TRUE FALSE The code for the NPM-character
PresCharacter varchar(20) N FALSE FALSE The character(s) to be presented

in the table
AggregPossible char(1) N FALSE FALSE Can a data cell marked with the

special character(s) enter into an
aggregation?

DataCellPres char(1) N FALSE FALSE Should the data cell value be
presented, or just the spec. char?

DataCellFilled char(1) N FALSE FALSE What data can be stored in the
data cell (N=nothing, V=value,
F=facultative (filled or empty),
0=zero

PresText varchar(200) Y FALSE FALSE Freetext explanation of the se-
mantics of the NPM-character

UserId varchar(20) Y FALSE FALSE
LogDate Datetime Y FALSE FALSE

In this table the definition of the NPM-characters for an instance of the statistical database should be
stored. A possible set of definitions may for example be:

Char-
acter-
Type

Pres-
Char
acter

Aggreg-
Possible

DataCell-
Pres

DataCell-
Filled

PresText User
Id

Log-
Date

01 . Y N 0 Category not applicable
02 .. N N N Data not available
03 … N N N Data not yet available
04 : N N N Not for publication
05 - Y N 0 Nil
15 e Y Y V Estimated value
20 * Y Y V Provisional or preliminary figure

Guidelines and rules for filling in the data table:
• The CharacterType column contains the codes to be stored in the data tables in the statistical

database.
• The PresCharacter column contains the character(s) that will be presented in the statistical ta-

bles.

3

• AggregPossible: If the value of the data cell may be used in arithmetical operations (in this case:
aggregations), AggregPossible should be Y. If not, it should be N.

• DataCellPres: If the value of the data cell should be presented in the statistical table in addition to
the special character(s), DataCellPres should be Y. If only the special character should be pre-
sented and not the data cell value, DataCellPres should be N.

• DataCellFilled: DataCellFilled shows what values the data cell may contain. There is a connec-
tion beween AggregPossible, DataCellFilled and the semantics of the NPM-character. If Aggreg-
Possible = Y, then it is possible to use the value of the data cell in calculations (e.g. aggregations),
and, consequently, it should be ascertained during the loading of the table data that the table cell
contains a valid value. If AggregPossible = N, on the other hand, the data cell should be empty,
since the data cell is not supposed to take part in any calculation.

Possible values for DataCellFilled are:

o V - Value. The data cell should contain a value.
o N - Nil. The data cell should be empty.
o F - Facultative. The data cell may contain a value (e.g. 0) or be empty.
o 0 - Zero. The data cell should contain a zero.

Due to limitations in the px-file format all NPM-characters with AggregPossible=Y and DataCell-
Pres=N (nil-symbols) will be stored in the same way in the px-file (as a "-") and presented in the
same way in the statistical tables (with the character defined by DataSymbolNil in the table MetaAdm,
see chapter 2.3).
Due to limitations in the px-file format there should be a maximum of 6 special characters defined
having both AggregPossible=N and DataCellPres=N. The 6 special characters are stored in the px-file
as sequences of 1 to 6 dots, i.e ".", "..", "…", "….", "…..", and "……". The 6 PC-Axis dot sequences
are assigned to the special characters of the SQL database in the following way:
• The records of the table SpecialCharacter are read in the order of the column CharacterType.
• The first special character with the properties AggregPossible=N and DataCellPres=N is assigned

the PC-Axis dot sequence "."
• The next special character with the properties AggregPossible=N and DataCellPres=N is assigned

the PC-Axis dot sequence "..", and so forth up to the 6th special character with the properties Ag-
gregPossible=N and DataCellPres=N, which is assigned the dot sequence "……".

• If more than 6 special characters with the properties AggregPossible=N and DataCellPres=N have
been defined in the table SpecialCharacter, the excess ones will be treated as equal to the 6th one
in the series.

If the statistical database is a multilingual one, the database table SpecialCharacter should be defined
for the main language, and supplementary database tables for each of the additional languages should
be added. For instance: A supplementary table for the special characters for English should have the
following name and structure:

Table: SpecialCharacter_Eng
Column name Datatype NULL Pr. Key For. key Description
CharacterType varchar(2) N TRUE TRUE The code for the NPM-character
PresCharacter varchar(20) N FALSE FALSE The character(s) to be presented

in the table
PresText varchar(200) Y FALSE FALSE Freetext explanation of the se-

mantics of the NPM-character(s)
UserId varchar(20) Y FALSE FALSE
LogDate datetime Y FALSE FALSE

4

The column CharacterType in the supplementary table serves both as the primary key for the table and
as foreign key towards the database table SpecialCharacter.

2.2 Addition of columns to (existing) database tables
New columns have to be created in one metadata table and possibly in some data tables.

2.2.1 Additions to metadata tables

The table MainTable will need one new column (it may already be implemented in some databases):
MainTable

Table: MainTable
Column name Datatype NULL Pr. key For. key Description
SpecCharExists char(1) N FALSE FALSE Y/E/N for using NPM-

characters in this table

SpecCharExists – N means that the extraction program will not look for NPM-characters in the spe-
cial NPM-columns in the data tables (see the next paragraph). E means that the special NPM-columns
have been defined in the sql data tables, but the extraction program should not use them. Y, on the
other hand, means that the extraction program a) expects the data table to contain the special NPM-
columns, and b) will look for NPM-characters in these columns (and process them if there are any).

The table Content will need one new column as well:
Content

Table: Content
Column name Datatype NULL Pr. key For. key Description
PresMissingLine varchar(2) Y FALSE FALSE Contains either NULL or a ref-

erence to a record in the table
SpecialCharacter

PresMissingLine - This column is is intended and designed as a addition to the existing column
PresCellsZero. The addition will offer more possibilities for the user.
PresMissingLine contains information for how data cells that have not been stored in the sql-database
should be presented by PC-Axis when the resulting output table matrix is created. PresMissingLine
relies on the value of the column PresCellsZero and on the property DefaultCodeMissingLine, which
should be stored in the table MetaAdm (see ch 2.3). PresMissingLine should only be filled in when
PresCellsZero = N.
The combination of PresCellsZero, PresMissingLine and DefaultCodeMissingLine allows for a num-
ber of possibilities. The main cases are (see table at next page):
 PresCellsZero = Y. The value of the data cells of missing records are interpreted (and presented)

as zeroes (0). The value of PresMissingLine and DefaultCodeMissingLine is irrelevant in this
case.

 PresCellsZero = N.
 PresMissingLine = <Code>. PresMissingLine must contain one of the CharacterType codes

from the table SpecialCharacter. This NPM character will be used for the data cells of the
missing records.

 PresMissingLine = NULL. In this case the NPM character defined in DefaultCodeMissing-
Line will be used for the data cells of the missing records.

The cases above are summarized in the table below:

5

 PresMissingLine
 Values NULL (empty) Contains a code for a special

character

PresCellsZero

Y

PresCellsZero indicates that the
data cell value of missing records
should be set = 0. PresMissingLine
is not relevant.

PresCellsZero indicates that the
data cell value of missing records
should be set = 0. The code in
PresMissingLine is irrelevant and
will be ignored

N

PresCellsZero indicates that the
data cell value of missing records
should be interpreted in a special
way. Since PresMissingLine is
empty, the special character stored
in DefaultCodeMissingLine will
be used.

PresCellsZero indicates that the
data cell value of missing records
should be interpreted in a special
way. The special character stored in
PresMissingLine will be used.

2.2.2 Additions to tables with statistical data
In the introduction to this documentation it was stated that the object of the NPM-system is to give the
creators of statistical tables the opportunity to annotate every single data cell in the tables. In chapter
2.1 the system of NPM-characters used for this annotation was outlined. The annotation proper con-
sists of storing the code for NPM-characters in dedicated columns in the data tables.
As an example consider the database table schema below.

A data table
Column Datatype Definition
Variable1 varchar(20) Variable 1, e.g. Region
Variable2 varchar(20) Variable 2, e.g. Age
Variable3 varchar(20) Variable 3, e.g. Sex
Time varchar(20) Time
Inhabitants numeric Content-column (measurement/estimate/enumeration)
Deaths numeric Content-column (measurement/estimate/enumeration)
Inhabitants _x varchar(2) The NPM-column for annotation of the Inhabitants’ data cells
Deaths_x varchar(2) The NPM-column for annotation of the Deaths’ data cells

The example shows a data table with three columns for variables (Variable1-Variable3), one column
for Time and two columns for content, Inhabitants and Deaths. The two last columns in the table are
the dedicated NPM-columns, where codes for the NPM-characters may be inserted. The naming con-
vention for the NPM-columns is very simple: Add “_x” to the name of the corresponding content col-
umns.
As the example shows, there should be one NPM-column for each content column. The position of the
columns in the data table is not important. To avoid confusion, it is wise not to let the names of the
regular content columns end in “_x”.
The administrator of the statistical database might want to consider creating NPM-columns in all data-
base tables, even if there are no plans at the moment for using NPM-characters in the statistical tables.
In most database systems empty columns occupy little space or no space at all.

2.3 Addition of records to existing database tables
This type of additions concerns one data table in the database, MetaAdm. The following records
should be added to the table (the text in the Value columns are examples):

6

Property Value UserId LogDate
DATANOTAVAILABLE ..
DATANOTESUM ++
DATASYMBOLNIL -
DATASYMBOLSUM ##
DEFAULTCODEMISSINGLINE 01
PXDATAFORMAT KEYS50
KEYSUPPERLIMIT 1000000

The four first records concern the internal workings of the NPM-system (see “Summation rules” later
in this document for a more thorough explanation). The two last records contain instructions for how
data extracted from the sql-database should be stored by PC-Axis.

2.3.1 DataNotAvailable
Occasionally empty (blank) data cells are stored in the sql-database. If the NPM-system has been im-
plemented in the sql-database, these cells should have been marked with an NPM-character that ex-
plains why the cell value is missing.
If there is no NPM-character attached to an empty cell (either because NPM is not used for the main-
table, or because the data cell for some other reason was not marked with an NPM-character), PC-Axis
will have to “guess” the “meaning” of the empty data cell, i.e. how to store it in the px-file and present
it in the resulting statistical tables.
During the data extraction empty data cells from the sql-database are always treated internally in the
extraction program as instances of a category 3 NPM-character (i.e. an unknown or confidential value,
more about categories of NPM-characters later in this document). The property DataNotAvailable
gives you (the database administrator) the opportunity to determine how PC-Axis will present the
empty data cells in statistical tables.
If the maintable under consideration uses NPM-characters, PC-Axis will compare the value of
DataNotAvailable with the column PresCharacter in the database table SpecialCharacter. Valid val-
ues for DataNotAvailable is the PresCharacter-text of one of the NPM-characters defined in the data-
base table SpecialCharacter, and valid NPM-characters for this comparison are the ones with Aggreg-
Possible=N and DataCellPres=N.
If the property DataNotAvailable is not included in the table MetaAdm, PC-Axis will assign the
NPM-character “..” to the empty data cell. If MetaAdm contains a value for DataNotAvailable that is
not equal to the PresCharacter-text of a valid NPM-character, PC-Axis will use the value given in
MetaAdm for presentation of the empty cell and treat this value as an NPM-character of category 3.
Observe that DataNotAvailable concerns how PC-Axis will present the empty data cells in the statis-
tical tables.

2.3.2 DataNoteSum
This property corresponds to the property with the same name in the px-file format. The property is
copied to the resulting px-file as
DATANOTESUM=”++”;
The value of the property is the symbol used in the px-files in the following case:
• The program for extraction of data from the sql-database has tried to aggregate two (or more) data

cells annotated with two (or more) different NPM-characters.
• The combination of these NPM-characters defines the data cells as a “summable” entity (see

summation rules later in this document).

7

• The sum for the entity is stored in the px-file. In addition a DATANOTE is created that attaches
the symbol DataNoteSum to the data cell. The datanote shows that the data cell was produced as a
sum of entities with different (but summable) markers.

• When the sum is presented in the statistical table the DataNoteSum-symbol is presented as a
marker for the figure in the data cell (e.g. 1234,5++).

If no presentation text is given for DataNoteSum in the table MetaAdm, the string “++“ will be used.

2.3.3 DataSymbolNil
This property shows the symbol that PC-Axis should present for the value of a data cell with abso-
lutely nothing in it (absolute nil), to distinguish the cell value from 0 (which may conceal a small
value, e.g. 0.1).
In the px-file all data cells of this type is stored with the cell value “-“ (no choice here). DataSymbol-
Nil determines how this internal “-“ will be presented in the statistical tables. In the example given
here the same symbol has been chosen for both storing and presentation.
If no presentation text is given for DataSymbolNil in the table MetaAdm, the character “-“ will be
used.

2.3.4 DataSymbolSum
This property corresponds to the property with the same name in the px-format. The name of the prop-
erty is poorly chosen, as the symbol is used in cases where no sum is possible! The reader will benefit
from (mentally) substituting DataSymbolNoSum for the name of the property while reading this
document (and perhaps otherwise as well…). The property is transferred to the resulting px-file as
DATASYMBOLSUM=”##”;
The value of the property is the symbol to be presented in the statistical table in the following case:
• The program for extraction of data from the sql-database has tried to aggregate two (or more) data

cells annotated with two (or more) different NPM-characters.
• Unfortunately the combination of these NPM-characters constitutes an “unsummable” entity (see

summation rules later in this document).
• In the px-file the result of this missing aggregation is stored as the symbol “…….” (i.e. 7 dots).
• In the statistical tables produced from the px-file the symbol defined by DataSymbolSum (here

the ##) is presented.
If no presentation text is given for DataSymbolSum in the table MetaAdm, the string “##“ will be
used.

2.3.5 PxDataFormat
The PxDataFormat property determines the strategy for storing data extracted from the sql-database
in the resulting px-file. There are 2 alternatives for the Value column:
MATRIX – This keyword states that all extractions should be stored in the regular matrix format.
KEYS40 – The second alternative is the text KEYS followed by a number larger than 0. The number
points to a ratio between the number of records read from the sql-database and the number of records
in the specified output matrix.
 No of recs read * 100
Ratio = -----------------------------------
 No of recs in output matrix
The equation shows that the number should be interpreted as a percentage. If, for instance, the end
user has specified an output matrix (statistical table) which will contain 1000 data cells and only 400
of these data cells are stored in (and read from) the sql-database, the ratio of stored data cells com-
pared to the number of data cells in the output matrix is 40 per cent.
The ratio can vary from a very small number (close to zero) to 100 (no elimination and no aggrega-
tion) and even much higher (when eliminating or aggregating or both).

8

If the ratio percentage is equal to or lower than the number stated in PxDataFormat, the Keys-format
will be used for storing the output matrix in the px-file (with a possible exception stored in the prop-
erty KeysUpperLimit, see below). Otherwise, the matrix format will be used.
If no text is given for PxDataFormat in the table MetaAdm, the value “KEYS20” will be used.

2.3.6 KeysUpperLimit
In addition to the keyword PxDataFormat also the keyword KeysUpperLimit may influence the choice
of format for the resulting px-file. The reason for this is the way PC-Axis handles the two formats.
When reading a px-file in matrix format (a “classic” px-file), PC-Axis does not need to read more of
the output matrix than the part that is to be displayed in the grid. When reading a px-file in Keys-
format, however, all the keys must be read before PC-Axis can determine which of them to display.
This means that the demand for internal memory is far greater for px-files in Keys-format than for px-
files in matrix format.
The demand for internal memory can be quantified as a function of the number of data cells in the
output matrix. If this demand is higher than the amount of available memory, PC-Axis will not be able
to process the px-file. The number of data cells in the output matrix is calculated as the product of
selected values for each variable (time included) times the number of selected contents. This is the
number of data cells that PC-Axis will need to hold in the internal memory of the computer.
The keyword KeysUpperLimit contains the upper boundary for the output matrices for which the
Keys-format can be used. If the output matrix is larger than this number, the px-file will be stored in
the matrix format.
As the amount of accessible memory will differ from one computer to another, it is not possible to
settle for an accurate limit. Through the keyword KeysUpperLimit each installation can determine its
own limit. Our experience is that too large values in some cases may cause problems for the computer.
If no text is given for KeysUpperLimit in the table MetaAdm, the value “2 000 000” will be used.

2.3.7 Use of the Keys-format
Use of the Keys-format is only indirectly relevant to the NPM-system. Storing the data part of the px-
files in the Keys-format is preferable for a number of data matrices. As the processing of the NPM-
system creates an extra overhead on the extraction of data from the sql-database, using the Keys-
format may in many cases reduce the processing time considerably.
Some tentative guidelines for using the Keys-format follow. The term “matrix” in the guidelines refers
the output matrix, i.e. the matrix of the statistical table that the end user have specified.
• Storing data in the Keys-format has the advantage that missing database records (“category not

applicable” or "nil") do not have to be brought into the processing. The Keys-format is, conse-
quently, preferable for sparsely populated matrices. For densely populated matrices there are gen-
erally only small (or no) benefits to be gained from using the Keys-format.

• An exception to the last point is the case of larger data matrices. In these cases use of the Keys-
format makes the processing of the extraction easier for the computer and should be the preferred
alternative.

• On the other hand: If the data matrix is very large, the Keys-format is not an viable alternative,
because the amount of memory in the computer sets a limit for PC-Axis’ capacity for handling
large data matrices stored in the Keys-format.

• Also, bear in mind that use of the Keys-format tends to increase the file size for the resulting px-
files to some extent (depending on the density of the matrix).

To sum it up:
• For very large matrices, use the matrix format. You can enforce this policy for your total database

installation by adjusting the keyword KeysUpperLimit to a suitable value.
• Otherwise, if processing time matters to you, choose the Keys-format . Set a very high value for

PxDataFormat, e.g. PxDataFormat=KEYS10000.
• If file size matters to you, choose the regular (matrix) px-format (PxDataFormat=MATRIX).

9

• If neither of the two is important to you, let the extraction program decide, set e.g. PxDataFor-
mat=KEYS50, which will constitute a practical compromise between processing time and file
size.

10

3 Additions to PC-Axis files
For the NPM-system to work, you must have installed the 2005-version of the PC-Axis program, or a
later version. In addition, you will have to make a few additions to (each of) your pcasqlxx.txt file(s)
(one file for each language that you implement in your statistical database).

3.1 Additions to pcasqlxx.txt

3.1.1 A new section: [SpecialCharacter]
The following section should be included in the pcasqlxx.txt file(s) of your system right after the sec-
tion [VSGroupLang2]:
[SpecialCharacter]
SpecialCharacter=SPECIALCHARACTER
CharacterType=CHARACTERTYPE
PresCharacter=PRESCHARACTER
AggregPossible=AGGREGPOSSIBLE
DataCellFilled=DATACELLFILLED
PresText=PRESTEXT
DataCellPres=DATACELLPRES

The [SpecialCharacter]-section is structured in the same way as most other database table sections in
pcasqlxx.txt. The purpose of the section is to identify the name of the SpecialCharacter table and the
names of important columns in this table.
If your statistical database is a multilingual one, the section shown above should pertain to the main
language of your database. For the other languages used you should include short sections of this type
(e.g. for English as the second language):
[SpecialCharacterLang2]
SpecialCharacterLang2=SPECIALCHARACTER_ENG
For database tables for secondary languages it is sufficient to identify the name of the tables.

11

4 How PC-Axis performs the data extraction
Below you will find an overview to give the end user an understanding of the basic processing steps of
the extraction of table data from the sql-database.
1) After the metadata has been read by PC-Axis and the px-file has been initialized with the bulk of

the metadata, PC-Axis calls OdbcCells.dll. OdbcCells is responsible for reading the table data
from the sql-database.

2) OdbcCells reads the pxs-file for the extraction.
3) OdbcCells reads a number of keys from the pcasqlxx.txt that is relevant for the extraction.
4) OdbcCells reads some metadata from the sql-database.
5) OdbcCells establishes if the source maintable uses NPM-characters or not.
6) Database tables are created for the code lists, and the code lists are stored in these tables.
7) The structure for the output data matrix is determined and a corresponding database table is cre-

ated.
8) OdbcCells reads the specified table data from the sql-database and stores the data read in the data

table for the output data.
9) OdbcCells counts the number of records read and compares the number to the number of records

in the total output matrix. These computations may in some circumstances decide if the output
data is stored in Keys-format or in the regular matrix format.

10) OdbcCells examines the table data read to see if there are empty (blank) data cells in any of the
records.

11) If there are empty data cells and the corresponding NPM-cells are empty, these NPM-cells are
filled with the NPM-character defined in DataNotAvailable (an NPM-character belonging to
category III, more about categories in the next chapter).

12) If the output data shall be stored in the matrix format, the output data matrix is expanded by in-
serting the cartesian product of data cells defined by (the data tables for) the code lists. The data
cells of these new records are filled with the figure 0, while the corresponding NPM-cells are
filled with either NULL (if PresCellsZero = Y) or with the NPM-character defined in PresMissin-
gLine or DefaultCodeMissingLine.

13) An SQL-statement is created for aggregating the desired data groups from the records in the out-
put data table. The code for the aggregation includes a number of calculations for each group
(more about these calculations in the next chapter). The purpose of these calculations is to pro-
vide information for applying the NPM summation rules (next chapter).

14) The SQL-statement is executed and the aggregated data + a few metadata keys are written to the
px-file.

15) Temporary data tables are removed.

12

5 Categories of NPM-characters and rules for aggregation
This chapter describes the principles that govern the work of the NPM-system.

5.1 Classification of NPM-characters into categories
Based on the contents of the columns AggregPossible and DataCellPres in the table SpecialCharac-
ter the NPM-characters can be subdivided into 4 categories. The four categories are:

 AggregPossible

Yes No

DataCellPres

Yes

I Explanation to a value (marker)
The data cell contains a value.
The presentation of the data cell
should contain both the value and
the marker
Example: "Preliminary figure"

Selfcontradictory category! Presenting
a value in the data cell is futile unless
the value can participate in an aggrega-
tion.

No

II Null values
The data cell contains a nil value.
The presented data cell should only
contain the special character.
Example: "Category not applicable"

III Substitution for a value
The data cell has no value.
The presented data cell should only
contain the special character.
Examples: "Data not available", "Not
for publication"

As the table shows only three of the four theoretically possible categories have a place in the NPM-
system. These three categories have been numbered from I to III (occasionally written 1 to 3).
The table below shows the subdivision into categories applied to the example of NPM-characters
shown in chapter 2:

Char-
acter-
Type

Pres-
Char
acter

Aggreg-
Possible

DataCell-
Pres

Data
Cell-
Filled

PresText Cate
gory

User
Id

Log-
Date

01 . Y N <0> Category not applicable II
02 .. N N N Data not available III
03 … N N N Data not yet available III
04 : N N N Not for publication III
05 - Y N <0> Nil II
15 e Y Y V Estimated value I
20 * Y Y V Provisional or preliminary

figure
I

5.2 Rules for aggregation
The category that an NPM-character belongs to determines how the NPM-character is treated in ag-
gregations and what the result of an aggregation will be. The following table gives an overview of the
possible situations that may arise when records with NPM-characters are part of a summation.
The table is called a rule matrix, and the cells in the matrix rule cells. In some of the rule cells there is
a reference to another rule cell instead of a rule, e.g. =B3. A reference of this type means that the
situation described in the rule cell is the same as the situation described for the other rule cell. Conse-
quently, the same action applies for both cells.

13

The rule matrix is used as follows:
1) A set of data cells (and their respective NPM-cells) is input to an aggregation.
2) Find out what categories of NPM-characters are represented among the data cells in the set.
3) Find out which is the highest NPM-category (3 is higher than 2, and so on) that enters into the

aggregation.
4) Use the column of the highest NPM-category as the starting point. Then find the text in the left-

most column that most appropriately describes the inventory of data cells in your aggregation.
5) The rule for your aggregation is found in the rule cell that is the crossing point of the text line and

the selected category column.

The other records
entering into the
aggregation are of
the following types:

Starting point: An aggregation contains one or more records that
contains a special character belonging to one of the categories:

Category I Category II Category III
"Marker"

Comment on an exist-
ing value:
”Preliminary figure”

"Nil-value"
Clarification to an ex-
isting value:
”Absolute nil”

"Non-printable value"
Replacement for a non-
printable value:
”unknown value”

A B C

0
The aggregation
includes one
record only

The special character
and the value are pre-
sented

The special character is
presented.

The special character is
presented.

1

All records in-
cluded in the ag-
gregation have the
same special char.

A regular aggregation.
The special character is
presented along with
the sum value.

No aggregation neces-
sary. The special cha-
racter is presented.

Aggregation is not
possible. Only the spe-
cial character is pre-
sented.

2

No other record in
the aggregation has
a special character

A regular aggregation.
The special character is
presented along with
the sum value.

A regular aggregation.
Only the sum value is
presented.

Aggregation is not
possible. Only the spe-
cial character is pre-
sented.

3

There are also
records with other
special characters
from the same
category

A regular aggregation.
The special character
"DataNoteSum" is
presented along with
the sum value.

A regular aggregation.
Only the sum value is
presented.

Aggregation is not
possible.
The special character
"DataSymbolSum" is
presented.

4

All records in the
aggregation have
special characters
from the same
category (but more
special characters
are represented)

A regular aggregation.
The special character
"DataNoteSum" is
presented along with
the sum value.

A regular aggregation.
Only the sum value
(=0) is presented.

Aggregation is not
possible.
The special character
"DataSymbolSum" is
presented.

5a

There are also
records with a
special char. from
category I (only
one type of special
char. from cat. I)

= A1

A regular aggregation.
The special character
from category I is pre-
sented along with the
sum value.

Aggregation is not
possible.
The special character
"DataSymbolSum" is
presented.

5b There are also
records with a spe- = A3

A regular aggregation.
The special character

Aggregation is not
possible.

14

The other records
entering into the
aggregation are of
the following types:

Starting point: An aggregation contains one or more records that
contains a special character belonging to one of the categories:

Category I Category II Category III
"Marker"

Comment on an exist-
ing value:
”Preliminary figure”

"Nil-value"
Clarification to an ex-
isting value:
”Absolute nil”

"Non-printable value"
Replacement for a non-
printable value:
”unknown value”

A B C
cial character from
cat. I (more types
of special charac-
ters from cat. I)

"DataNoteSum" is
presented along with
the sum value.

The special character
"DataSymbolSum" is
presented.

6

There are also
records with a spe-
cial character from
cat. II

= B5a + B5b = B3

Aggregation is not
possible. Only the spe-
cial character is pre-
sented.

7

There are also
records with a spe-
cial character from
cat. III

= C5a + C5b = C6 = C3

Notes to the contents of the table:
• Cell C6 in an earlier version had the same rule as cells C5a and C5b. For technical reasons (as

explained in chapter 4, during reading from the sql-database the output matrix is expanded by
adding empty data cells for the whole matrix, and these empty data cells may have NPM-
characters of category II added with them) the rule had to be changed to its present form to ensure
that processing with PresCellsZero=Y would give the same result as processing with
PresCellsZero=N (i.e. so that C1 and C2 (PresCellsZero=Y) is represented in the same way as C6
(PresCellsZero=N)). (Actually one also has to take into account the type of special character de-
fined in PresMissingLine og DefaultCodeMissingLine. Here the two are assumed to belong to
category II.)

• It can be argued that this change is altogether not unreasonable. Aggregations will most often
involve only one type of NPM-characters belonging to category III, which then is the category
“responsible” for making the result of the aggregation non-presentable, and therefore deserves to
be presented as the “culprit”, as the cell rule now does. Only marginally aggregations will include
more types of NPM-characters belonging to category III. In these cases rule C6 is not wrong, but
also not quite accurate, ascribing the reason for the non-presentability to only one of the NPM-
characters (the “largest” one, when sorted alphabetically, will be chosen in this case).

• The “culprit” argument can be advanced with regard to rules C5a and C5b as well. Substituting
the present form of rule C6 for these two cells as well will make the result of aggregations more
transparent. This line of reasoning ultimately leads to reserving the special character DataSym-
bolSum to the cases where more than one type of special characters belonging to category is in-
volved in the aggregation. The problem is that this is a situation that the current algorithm (see be-
low) cannot record in an exhaustive way (except for C3 and C4, which are typical examples).

5.3 The algorithm for aggregation
Based on the rules of the rule matrix it is possible to formulate an algorithm for the aggregations. The
algorithm must be able to
• decide which aggregation situation (rule cell) a given summation belongs to, and

15

• (to be efficient) at the same time perform the summation.
A ”pseudo-version” of the algorithm may look like this:

If only inserted records are involved in the aggregation group, then
 If a special sign is defined for inserted records, then
 Use sign for inserted record
 End if

ElseIf NPM characters are not used, then
 If records with empty cell values are part of the aggregation, then
 Use sign for data not available
 ElseIf the aggregation includes inserted records with no "mates", then
 If a special sign for inserted records is defined, then
 Use sign for inserted record
 End if
 End if

Else -- recs. from the database included and NPM characters used
 If there are special characters involved in the aggregation, then
 If the aggregation involves only one record, then
 If the special character belongs to category I, then
 A0
 Else
 B0-C0
 End if
 Else -- more than one record included in the aggregation
 If the aggregation involves a special character of category III, then
 If the number of distinct NPM-characters involved equals 1,
 Or the aggregation involves a special char. of category II, then
 C1-C2, C6
 Else
 C3-C5
 End if
 Elseif the aggregation involves a special char. from category II, then
 If all NPM-characters in the aggregation belongs to category II, then
 If there are inserted records with no "mates"
 And the special sign for missing records belongs to cat. 3, then
 C6
 ElseIf the number of distinct NPM-characters > 1, then
 B3-B4
 Elseif (NoOf dist. NPM = 1)
 And ((NoOf records = NoOf NPM-characters)
 Or (sign for inserted rec = highest ranked NPM in aggr. group)) then
 B1
 Else
 B2
 End if
 Else -- There are one or more cells with NPM-chars of cat. I as well
 If there are inserted records with no "mates"
 And the special sign for missing records belongs to cat. 3, then
 C5a-C5b
 Else
 If the number of distinct NPM-characters = 2, then
 B5a
 Else
 B5b
 End if
 End if
 End if
 Else – Only NPM-characters of category I is involved
 If there are inserted records with no "mates"
 And the special sign for missing records belongs to cat. 3, then
 C5a-C5b
 Else
 If the number of distinct NPM-characters > 1 then
 A3-A4

16

 Else
 A1-A2
 End if
 End if
 End if
 End if
 ElseIf there are inserted records with no "mates"
 And the special sign for missing records belongs to cat. 1 or higher, then
 Present the defined sign for missing record
 End if
End if

To be able execute this algorithm efficiently the data program must have access to the information that
we may conceive of as stored in the following variables:

Variable name Variable contents
NumberOfRecords The number of records that enters into the aggregation group
NumberOfNPMSigns The number of records in the aggregation group that has got

NPM-characters
NumberOfDistinctNPMSigns The number of distinct NPM-characters participating in the ag-

gregation group
HighestCategoryNPMSign The highest category of NPM-characters in the aggregation

group
LowestCategoryNPMSign The lowest category of NPM-characters in the aggregation group
NumberOfRecsFromDatabase The number of records read from the sql-database in the aggre-

gation group

This information can be provided by expanding the final SELECT statement with 6 group functions
(COUNT, MAX, MIN, SUM):
SELECT COUNT(*) AS NumberOfRecords,
 SUM(Contents) AS Value,
 COUNT(Contents_x) AS NumberOfNPMSigns,
 COUNT(DISTINCT Contents_x) AS NumberOfDistinctNPMSigns,
 MAX(Contents_x) AS HighestCategoryNPMSign,
 MIN(Contents_x) AS LowestCategoryNPMSign,
 SUM(SqlMarkColumn) AS NumberOfRecsFromDatabase
FROM DataTable
GROUP BY

In addition to the result of the GROUP functions, other “metadata”, collected during the execution of
the extraction program, is available at the time of saving the extracted data in a file:
• NPMColumnsUsed – For each maintable the property SpecCharExists (Y or N) shows if the

NPM-system is used for the main table or not. NPMColumnsUsed is the internal representation of
SpecCharExists in this program.

• PresCellsZero + PresMissingLine + DefaultCodeMissingLine – For each content variable in
the sql-database a special character for presenting the data cell value of missing lines (records not
stored in the database, but inserted during extraction) may be defined. If no special character is
defined, a 0 (zero) should be presented. This information is derived for each content from the val-
ues of PresCellsZero, PresMissingLine, and DefaultCodeMissingLine and stored in a variable
called PresMissingLine in the code listings below.

• NumberOfBlankDataCells – Each content variable has an indicator that shows how many blank
(empty) data cells were read from the sql-database.

17

These additional metadata make it possible to speed up the final processing by treating the most fre-
quent cases without entering the more “heavy” parts of the algorithm. The pseudo-algorithm above
can now be expanded and rewritten as:

If NumberOfRecsFromDatabase = 0 Then –- No need to check for blank data cells!
 /* Inserted records only. Only possible when storing in Matrix format. */
 If Len(PresMissingLine) > 0 Then -- Special char. for missing line defined
 Present NPM-character for missing line (PresMissingLine)
 Else
 Present 0 -- No special character for missing line defined. Present a zero
 End If
ElseIf NPMColumnsUsed = "N" Then -- NPM-characters are not used for this matrix
 /* Database data exist, and so we will ignore possible PresMissingLines.
 Since NPM is not used, we only need to look for blank data cells!
 */
 EmptyCellFound = FALSE -- Need a flag
 If NumberOfBlankDataCells > 0 Then -- NB! Must check for possible NPM-chars!
 If NumberOfDistinctNPMSigns > 0 Then -- Only possible is DataNotAvailable
 Present character for DataNotAvailable
 EmptyCellFound = TRUE
 End If
 End If

 If NOT EmptyCellFound Then
 If (NumberOfRecordsFromDatabase * 2) < NumberOfRecords Then -- Inserted recs
 /* The sum group contains inserted records with no "mate" from the database
 If PresCellZero=N and PresMissingLine of cat. 3, then present spec. char.
 */
 If Left(PresMissingLine, 1) = "3" Then
 Present NPM-character for missing line (PresMissingLine)
 End If
 End If
 End If
Else -- NumberOfRecsFromDatabase > 0 And NPMColumnsUsed = "Y"
 /* No short cut possible, we have to enter the main rule system */
 If NumberOfDistinctNPMSigns > 0 Then -- One or more NPM-characters used
 If NumberOfRecords = 1 Then -- Only 1 record in the aggregation group
 If HighestCategoryNPMSign = 1 Then -- Must be a marker!
 A0
 Else -- Zero value or a unavailable value
 B0-C0
 End If
 Else -- (NumberOfDistinctNPMSigns > 0) And (NumberOfRecords > 1)
 If HighestCategoryNPMSign = 3 then -- Unavailable value...
 If NumberOfDistinctNPMSigns = 1 -- ...but only one of them
 Or LowestCategoryNPMSign = 2 Then -- ...and there is also NPM of cat. 2
 C1-C2, C6
 Else -- (NumberOfDistinctNPMSigns > 1) And (LowestCategoryNPMSign <> 2)
 C3-C5
 End If
 ElseIf HighestCategoryNPMSign = 2 then -- Zero value
 If LowestCategoryNPMSign = 2 then -- and the same goes for No 2
 If there are inserted records with no "mate"
 And PresMissingLine belongs to cat. 3 Then -- unlikely, but poss.
 C6
 ElseIf (NumberOfDistinctNPMSigns > 1) then -- more NPM-chars used
 B3-B4
 ElseIf (NumberOfDistinctNPMSigns = 1)
 And ((NumberOfRecords = NumberOfNPMSigns)
 Or (PresMissingLine = HighestCategoryNPMSign)) Then
 B1
 Else
 B2
 End If
 Else – There are cells with NPM characters from category 1 as well
 If there are inserted records with no "mate"

18

 And PresMissingLine belongs to cat. 3 Then -- unlikely, but poss.
 C5a-C5b
 Else
 If NumberOfDistinctNPMSigns = 2 then –- only one from to cat. 2
 B5a
 Else –- more than 2 distinct NPM chars – only one from cat. 2
 B5b
 End If
 End If
 End If
 Else -- Only special characters of category I are included
 If there are inserted records with no "mate"
 And PresMissingLine belongs to cat. 3 Then -- not unlikely here
 C5a-C5b
 Else
 If NumberOfDistinctNPMSigns > 1 Then
 A3-A4
 Else
 A1-A2
 End If
 End If
 End If
 End If
 ElseIf there are inserted records with no "mate"
 And PresMissingLine belongs to cat. 1 or higher Then
 Present character for missing record
 End If
End If

	1 Introduction
	2 Additions to the sql-database
	2.1 New database tables in the sql-database
	2.2 Addition of columns to (existing) database tables
	2.2.1 Additions to metadata tables
	2.2.2 Additions to tables with statistical data

	2.3 Addition of records to existing database tables
	2.3.1 DataNotAvailable
	2.3.2 DataNoteSum
	2.3.3 DataSymbolNil
	2.3.4 DataSymbolSum
	2.3.5 PxDataFormat
	2.3.6 KeysUpperLimit
	2.3.7 Use of the Keys-format

	3 Additions to PC-Axis files
	3.1 Additions to pcasqlxx.txt
	3.1.1 A new section: [SpecialCharacter]

	4 How PC-Axis performs the data extraction
	5 Categories of NPM-characters and rules for aggregation
	5.1 Classification of NPM-characters into categories
	5.2 Rules for aggregation
	5.3 The algorithm for aggregation

